💯
University Notes
  • Introduction
  • High Level Math
    • Function, limitation, and continuity
      • What is function?
      • Two kinds of infinity
      • The limitation of a function
      • A model for getting limitation
    • Derivative and differential
      • Formulas of derivative
      • Use derivative formula
      • Goes deeper
      • Use derivative
        • Function analyzing in theory
          • First derivative
          • Second derivative
          • Domain and Extreme Value
          • Overall change
        • Derivative use in reality
    • Integration
      • Indefinite integral
        • Basic formulas
        • Use formula
        • Goes deeper
        • Integration by parts
      • Definite integral
        • Properties of definite integral
        • Second fundamental theorem of calculus
        • Multi-method for solving definite integral
    • Multivariable calculus
      • Limitation
      • Partial derivatives
      • Differential
      • Multiple integral
    • Series
    • Linear algebra
    • GaoKao
      • 1
      • The road for starting
      • Polar Coordinates
      • Tangent Line
  • Electrical Engineering
    • The Terminologys
    • DC
      • The circuit rule
      • KCL and KVL
      • Superposition
    • AC
      • Intuition
      • Resistor
      • Inductor
      • Capacitor
      • AC circuit
      • 三相电
        • 星形联结
        • 三角形联结
        • 实际电路
    • Voltage and Current Rule in Circuit
    • Response
      • Foundations
      • 零输入响应
      • 零状态响应
      • 一阶电路的全响应
  • Analog Electronics
    • Technical terms 1
    • DC stable source circuit 的分析与应用
      • 二极管的特性与应用
        • 半导体
        • PN junction
        • Diode
        • 测试二极管
      • 整流滤波电路的分析与应用
        • Rectifier circuit
      • 直流稳压电路的分析
        • Zener diode
        • Shunt voltage regulators
    • Thyristor
    • Technical terms 2
    • Amplifying circuit
      • Bipolar Junction Transistor
      • Common Emitter Configuration
      • Biasing
      • Analysis
      • Mess
      • Negative-feedback amplifier
      • Integrated Operational Amplifier
    • Algorithms
      • What's the ouput of a voltage rectifier circuit
      • PNP or NPN
      • Judging the state of a BJT
      • What's common in BJT
      • Does a amplifying circuit normal
      • What's the feedback type
      • What kind of distortion you are encounter
  • Digital Electronic Technology
    • Logic Gate
    • Logic expressions
    • Karnaugh map
    • Number system
    • Multiplexer
    • Flip-flop
  • Principles of Communications
    • Overviews
    • PCM
    • HDB3
    • Modulations
    • Cyclic code
  • Data Communications and Networking
    • Something about IPv4
  • Micro Control System 51 Series
    • The Delay function
    • The Interrupt function
  • Maintenance of Railway Optical Cable Lines
    • Questions
    • Pictures
  • Mobile Communications
    • Concepts
    • Coding and Modulation
    • Key Technologies
    • Mobile communication network structure
    • Radio wave Propagation and Interference
    • GSM
    • CDMA
    • GPRS
    • 3G
    • 4G
    • Base Station Maintenance
  • Multimedia Communication
    • Concept of Multimedia
    • Compression
    • Lossless Compression
    • Audio
    • Lossy Audio Coding
    • Graph Compression
    • All for the exam
  • Power system for Communication Devices
    • Overview
    • AC power Distribution Panel
    • UPS
    • HF Switched-mode Power Supply
    • Battery
    • Earthing or Use Lightning Arrester
    • Power Supply Monitoring System
    • All for the exam
  • Optical fiber Communication system
    • What is Optical fiber Communication system
      • Prepare
      • Something About Optical fiber
      • Passive Optical Devices
      • Active Optical Devices
      • Optical transmitter Test
      • Optical receiver Test
      • Compose an Optical Communication System
    • SDH (Synchronous Digital Hierarchy)
      • Frame Structure of SDH
      • SDH Equipments
      • Clock System
      • ZXONM E300 Practice
      • SDH protection
    • WDM (Wavelength-Division Multiplexing)
    • OTN (Optical Transport Network)
      • OverHead of OTN
      • OTN Alarms & Errors
      • Do it again, what's happened?
  • Communication Tech English
    • Fundamentals of Electricity
    • Digital Communications
    • Optical Communications
  • High-speed railway Communication Technology
    • Overview
    • Base Knowledge
    • FH98
    • MDS3400
    • Everything is for the exam
  • GSM for Railway
    • Overview
    • Wired Parts
    • Digital dispatch Communication System
    • Basic Knowledge of GSM-R
    • Key technologies for GSM-R
    • Structure of GSM-R
    • GSM-R Network Mode
    • Wireless Channels for GSM-R
    • Mobility Management
    • Connection Management
    • Security Management
    • GPRS
    • GSM-R/GPRS Wireless Access Platform
    • GSM-R Features
    • GSM-R Numbering Plan
    • ASCI
  • Network Configuration Training
    • Words I have learned
  • Broadband Access Technology
    • Using Copper Line
    • Using Optical Fiber
    • Wireless
    • All for the test
  • CIR
    • Basci Knowledge
    • Testing Equipment
    • The Structure of CIR
    • All for the exam
  • LTE
  • Script for ChaoXing
  • Transmission and access network
Powered by GitBook
On this page

Was this helpful?

  1. High Level Math

Series

PreviousMultiple integralNextLinear algebra

Last updated 5 years ago

Was this helpful?

Series is actually the sum of some array (or list).

∑n=14n=1+2+3+4\sum_{n=1}^{4} n = 1 + 2 + 3 + 4∑n=14​n=1+2+3+4

∑n=1∞n=1+2+3+4+...\sum_{n=1}^{\infty} n = 1 + 2 + 3 + 4 + ...∑n=1∞​n=1+2+3+4+...

Say if we got an series:

∑n=1∞un=u1+u2+u3+u4+...+u∞\sum_{n=1}^{\infty} u_n = u_1 + u_2 + u_3 + u_4 + ... + u_{\infty}∑n=1∞​un​=u1​+u2​+u3​+u4​+...+u∞​

If we can find a way to represent its sum, for example,

Sn=u1+u2+u3+u4+...+unS_n = u_1 + u_2 + u_3 + u_4 + ... + u_nSn​=u1​+u2​+u3​+u4​+...+un​

If SnS_nSn​ exists and it's not ∞\infty∞, then we could say SnS_nSn​ approaching to a constant

Also, in the same way, we could say as n goes up, ∑n=1∞un\sum_{n=1}^{\infty} u_n∑n=1∞​un​ converges to a constant

In other words, the series ∑n=1∞un\sum_{n=1}^{\infty} u_n∑n=1∞​un​ converges; or ∑n=1∞un\sum_{n=1}^{\infty} u_n∑n=1∞​un​ is a convergent series

converge 收敛

diverge 发散

Let's get started!

∑n=1∞un converges⇒lim⁡n→∞un=0\sum_{n=1}^{\infty} u_n \text{ converges} \Rightarrow \lim_{n \to \infty}{u_n} = 0∑n=1∞​un​ converges⇒limn→∞​un​=0

∑n=1∞un diverges⇔lim⁡n→∞un≠0\sum_{n=1}^{\infty} u_n \text{ diverges} \Leftrightarrow \lim_{n \to \infty}{u_n} \not= 0∑n=1∞​un​ diverges⇔limn→∞​un​=0

We all know unu_nun​ is the last item in a series, if the sum of that series want to be a constant, the last item must equal to 0, so lim⁡n→∞un\lim_{n \to \infty}{u_n}limn→∞​un​ has to be 0

If it's not, well, as if the last item of that series not 0, the sum of that series is uncertain, so we say the series diverges

harmonic series

But it's a divergent series

Geometric Series (几何级数)

Why? Just think about it, as n goes up, everytime, the last item of this series times a value which less than 1, so the item will be smaller and smaller, in the end, the last item of that series became zero, that means, the sum of this series is a constant, also, we could say it converges, that series is a convergent series.

Why? Just think about it, as n goes up, everytime, the last item of this series times a value which greater or equal to 1, so the item will be bigger and bigger, in the end, the last item of that series becomes infinite, that means, the sum of this series is also infinity, so, we say it diverges, that series is a divergent series.

p-series (p级数)

Positive series (正向级数)

A series with terms that are all positive.

alternating series (交错级数)

The signs of the general terms alternate between positive and negative.

If the following conditions are met, converges (otherwise, diverges):

~The first condition said, the last item must be less than before, that's good, in that case, we will not get an infinite number in the last item~

The second condition just like normal series

Power series (幂级数)

The main characteristic of this series is it has a variable x

  1. Get domain of convergence

  2. Get Sum function

All these series, converges if and only if the associated sequence of partial sums converges.

∑n=1∞1n=11+12+13+...\sum_{n=1}^{\infty} \frac{1}{n} = \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + ...∑n=1∞​n1​=11​+21​+31​+...

lim⁡n→∞1n=0\lim_{n \to \infty}{\frac{1}{n}} = 0limn→∞​n1​=0

∑n=0∞qn\sum_{n=0}^{\infty} q^n∑n=0∞​qn

When ∣q∣<1|q| < 1∣q∣<1, converges

When ∣q∣≥1|q| \ge 1∣q∣≥1, diverges

∑n=1∞1np\sum_{n=1}^{\infty} \frac{1}{n^p}∑n=1∞​np1​

When p>1p > 1p>1, converges (收敛)

Why? If p>1p > 1p>1, everytime as n goes up, npn^pnp gets bigger and bigger, until infinite, so 1∞=0\frac{1}{\infty} = 0∞1​=0. The sum of that series has limitation, it's a constant, so the series converges.

When p≤1p \le 1p≤1, diverges (发散)

Why? If p≤1p \le 1p≤1, everytime as n goes up, npn^pnp gets smaller and smaller, until 0, so 10=∞\frac{1}{0} = \infty01​=∞. The sum of that series does not have a limitation, it's infinite, so the series diverges.

∑n=1∞un , (un>0)\sum_{n=1}^{\infty} u_n \text{ , } (u_n > 0)∑n=1∞​un​ , (un​>0)

Set  l=lim⁡n→∞un+1un\text{Set } \text{ } l = \lim_{n \to \infty}{\frac{u_{n+1}}{u_n}}Set  l=limn→∞​un​un+1​​

when l<1l < 1l<1 , un+1<unu_{n+1} < u_nun+1​<un​ , converges

when l>1l > 1l>1 , un+1>unu_{n+1} > u_nun+1​>un​ , diverges

when l=1l = 1l=1 , un+1=unu_{n+1} = u_nun+1​=un​ , uncertain

∑n=0∞(−1)nan\sum_{n=0}^{\infty} (-1)^n a_n∑n=0∞​(−1)nan​

un≥un+1u_n \ge u_{n+1}un​≥un+1​

lim⁡n→∞un=0\lim_{n \to \infty} u_n = 0limn→∞​un​=0

∑n=1∞xn⋅(an expression which only related n)\sum_{n=1}^{\infty} x^n \cdot \text{(an expression which only related n)}∑n=1∞​xn⋅(an expression which only related n)

If we have a series ∑n=1∞xn⋅1n\sum_{n=1}^{\infty} x^n \cdot \frac{1}{n}∑n=1∞​xn⋅n1​

ρ=lim⁡n→∞∣n expression+1n expression∣=lim⁡n→∞∣1n+11n∣=1interval of convergece =(−1ρ,1ρ)=(−1,1)∵when x=−1ρ=−1 , ∑n=1∞(−1)nn converges     when x=1ρ=1 , ∑n=1∞(1)nn diverges∴domain of convergence is [−1,1)\begin{align*} &\rho = \lim_{n \to \infty} |\frac{\text{n expression}+1}{\text{n expression}}| = \lim_{n \to \infty} |\frac{\frac{1}{n+1}}{\frac{1}{n}}| = 1 \\ \\ &\text{interval of convergece } = (-\frac{1}{\rho}, \frac{1}{\rho}) = (-1, 1) \\ \\ &\because \text{when } x = -\frac{1}{\rho} = -1 \text{ , } \sum_{n=1}^{\infty} \frac{(-1)^n}{n} \text{ converges} \\ \\ &\text{ }\text{ }\text{ }\text{ }\text{ } \text{when } x = \frac{1}{\rho} = 1 \text{ , } \sum_{n=1}^{\infty} \frac{(1)^n}{n} \text{ diverges} \\ \\ &\therefore \text{domain of convergence is } [-1, 1) \end{align*}​ρ=n→∞lim​∣n expressionn expression+1​∣=n→∞lim​∣n1​n+11​​∣=1interval of convergece =(−ρ1​,ρ1​)=(−1,1)∵when x=−ρ1​=−1 , n=1∑∞​n(−1)n​ converges     when x=ρ1​=1 , n=1∑∞​n(1)n​ diverges∴domain of convergence is [−1,1)​
S(x)=∑n=1∞xn⋅1n , x∈[−1,1)take defivative of S(x):S′(x)=1n⋅(∑n=1∞xn)′=1n⋅∑n=1∞n⋅xn−1=∑n=1∞xn−1=11−xS(x)=∫0x11−x=−ln⁡(1−x)\begin{align*} &S(x) = \sum_{n=1}^{\infty} x^n \cdot \frac{1}{n} \text{ , } x \in [-1, 1) \\ \\ &\text{take defivative of }S(x): \\ \\ &S^\prime (x) = \frac{1}{n} \cdot (\sum_{n=1}^{\infty} x^n)^\prime \\ \\ & = \frac{1}{n} \cdot \sum_{n=1}^{\infty} n \cdot x^{n - 1} = \sum_{n=1}^{\infty} x^{n - 1} = \frac{1}{1 - x} \\ \\ & S(x) = \int_0^x \frac{1}{1-x} = - \ln(1-x) \end{align*}​S(x)=n=1∑∞​xn⋅n1​ , x∈[−1,1)take defivative of S(x):S′(x)=n1​⋅(n=1∑∞​xn)′=n1​⋅n=1∑∞​n⋅xn−1=n=1∑∞​xn−1=1−x1​S(x)=∫0x​1−x1​=−ln(1−x)​