Series

Series is actually the sum of some array (or list).

āˆ‘n=14n=1+2+3+4\sum_{n=1}^{4} n = 1 + 2 + 3 + 4

āˆ‘n=1āˆžn=1+2+3+4+...\sum_{n=1}^{\infty} n = 1 + 2 + 3 + 4 + ...

Say if we got an series:

āˆ‘n=1āˆžun=u1+u2+u3+u4+...+uāˆž\sum_{n=1}^{\infty} u_n = u_1 + u_2 + u_3 + u_4 + ... + u_{\infty}

If we can find a way to represent its sum, for example,

Sn=u1+u2+u3+u4+...+unS_n = u_1 + u_2 + u_3 + u_4 + ... + u_n

If SnS_n exists and it's not āˆž\infty, then we could say SnS_n approaching to a constant

Also, in the same way, we could say as n goes up, āˆ‘n=1āˆžun\sum_{n=1}^{\infty} u_n converges to a constant

In other words, the series āˆ‘n=1āˆžun\sum_{n=1}^{\infty} u_n converges; or āˆ‘n=1āˆžun\sum_{n=1}^{\infty} u_n is a convergent series

converge ꔶꕛ

diverge å‘ę•£

Let's get started!

āˆ‘n=1āˆžunĀ convergesā‡’limā”nā†’āˆžun=0\sum_{n=1}^{\infty} u_n \text{ converges} \Rightarrow \lim_{n \to \infty}{u_n} = 0

āˆ‘n=1āˆžunĀ divergesā‡”limā”nā†’āˆžun=Ģø0\sum_{n=1}^{\infty} u_n \text{ diverges} \Leftrightarrow \lim_{n \to \infty}{u_n} \not= 0

We all know unu_n is the last item in a series, if the sum of that series want to be a constant, the last item must equal to 0, so limā”nā†’āˆžun\lim_{n \to \infty}{u_n} has to be 0

If it's not, well, as if the last item of that series not 0, the sum of that series is uncertain, so we say the series diverges

harmonic series

āˆ‘n=1āˆž1n=11+12+13+...\sum_{n=1}^{\infty} \frac{1}{n} = \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + ...

limā”nā†’āˆž1n=0\lim_{n \to \infty}{\frac{1}{n}} = 0

But it's a divergent series

Geometric Series (几何ēŗ§ę•°)

āˆ‘n=0āˆžqn\sum_{n=0}^{\infty} q^n

When āˆ£qāˆ£<1|q| < 1, converges

Why? Just think about it, as n goes up, everytime, the last item of this series times a value which less than 1, so the item will be smaller and smaller, in the end, the last item of that series became zero, that means, the sum of this series is a constant, also, we could say it converges, that series is a convergent series.

When āˆ£qāˆ£ā‰„1|q| \ge 1, diverges

Why? Just think about it, as n goes up, everytime, the last item of this series times a value which greater or equal to 1, so the item will be bigger and bigger, in the end, the last item of that series becomes infinite, that means, the sum of this series is also infinity, so, we say it diverges, that series is a divergent series.

p-series (pēŗ§ę•°)

āˆ‘n=1āˆž1np\sum_{n=1}^{\infty} \frac{1}{n^p}

When p>1p > 1, converges (ꔶꕛ)

Why? If p>1p > 1, everytime as n goes up, npn^p gets bigger and bigger, until infinite, so 1āˆž=0\frac{1}{\infty} = 0. The sum of that series has limitation, it's a constant, so the series converges.

When pā‰¤1p \le 1, diverges (å‘ę•£)

Why? If pā‰¤1p \le 1, everytime as n goes up, npn^p gets smaller and smaller, until 0, so 10=āˆž\frac{1}{0} = \infty. The sum of that series does not have a limitation, it's infinite, so the series diverges.

Positive series (ę­£å‘ēŗ§ę•°)

A series with terms that are all positive.

āˆ‘n=1āˆžunĀ ,Ā (un>0)\sum_{n=1}^{\infty} u_n \text{ , } (u_n > 0)

SetĀ Ā l=limā”nā†’āˆžun+1un\text{Set } \text{ } l = \lim_{n \to \infty}{\frac{u_{n+1}}{u_n}}

when l<1l < 1 , un+1<unu_{n+1} < u_n , converges

when l>1l > 1 , un+1>unu_{n+1} > u_n , diverges

when l=1l = 1 , un+1=unu_{n+1} = u_n , uncertain

alternating series (äŗ¤é”™ēŗ§ę•°)

āˆ‘n=0āˆž(āˆ’1)nan\sum_{n=0}^{\infty} (-1)^n a_n

The signs of the general terms alternate between positive and negative.

If the following conditions are met, converges (otherwise, diverges):

  1. unā‰„un+1u_n \ge u_{n+1}

  2. limā”nā†’āˆžun=0\lim_{n \to \infty} u_n = 0

~The first condition said, the last item must be less than before, that's good, in that case, we will not get an infinite number in the last item~

The second condition just like normal series

Power series (幂ēŗ§ę•°)

āˆ‘n=1āˆžxnā‹…(anĀ expressionĀ whichĀ onlyĀ relatedĀ n)\sum_{n=1}^{\infty} x^n \cdot \text{(an expression which only related n)}

The main characteristic of this series is it has a variable x

  1. If we have a series āˆ‘n=1āˆžxnā‹…1n\sum_{n=1}^{\infty} x^n \cdot \frac{1}{n}

  2. Get domain of convergence

    Ļ=limā”nā†’āˆžāˆ£nĀ expression+1nĀ expressionāˆ£=limā”nā†’āˆžāˆ£1n+11nāˆ£=1intervalĀ ofĀ convergeceĀ =(āˆ’1Ļ,1Ļ)=(āˆ’1,1)āˆµwhenĀ x=āˆ’1Ļ=āˆ’1Ā ,Ā āˆ‘n=1āˆž(āˆ’1)nnĀ convergesĀ Ā Ā Ā Ā whenĀ x=1Ļ=1Ā ,Ā āˆ‘n=1āˆž(1)nnĀ divergesāˆ“domainĀ ofĀ convergenceĀ isĀ [āˆ’1,1)\begin{align*} &\rho = \lim_{n \to \infty} |\frac{\text{n expression}+1}{\text{n expression}}| = \lim_{n \to \infty} |\frac{\frac{1}{n+1}}{\frac{1}{n}}| = 1 \\ \\ &\text{interval of convergece } = (-\frac{1}{\rho}, \frac{1}{\rho}) = (-1, 1) \\ \\ &\because \text{when } x = -\frac{1}{\rho} = -1 \text{ , } \sum_{n=1}^{\infty} \frac{(-1)^n}{n} \text{ converges} \\ \\ &\text{ }\text{ }\text{ }\text{ }\text{ } \text{when } x = \frac{1}{\rho} = 1 \text{ , } \sum_{n=1}^{\infty} \frac{(1)^n}{n} \text{ diverges} \\ \\ &\therefore \text{domain of convergence is } [-1, 1) \end{align*}
  3. Get Sum function

    S(x)=āˆ‘n=1āˆžxnā‹…1nĀ ,Ā xāˆˆ[āˆ’1,1)takeĀ defivativeĀ ofĀ S(x):Sā€²(x)=1nā‹…(āˆ‘n=1āˆžxn)ā€²=1nā‹…āˆ‘n=1āˆžnā‹…xnāˆ’1=āˆ‘n=1āˆžxnāˆ’1=11āˆ’xS(x)=āˆ«0x11āˆ’x=āˆ’lnā”(1āˆ’x)\begin{align*} &S(x) = \sum_{n=1}^{\infty} x^n \cdot \frac{1}{n} \text{ , } x \in [-1, 1) \\ \\ &\text{take defivative of }S(x): \\ \\ &S^\prime (x) = \frac{1}{n} \cdot (\sum_{n=1}^{\infty} x^n)^\prime \\ \\ & = \frac{1}{n} \cdot \sum_{n=1}^{\infty} n \cdot x^{n - 1} = \sum_{n=1}^{\infty} x^{n - 1} = \frac{1}{1 - x} \\ \\ & S(x) = \int_0^x \frac{1}{1-x} = - \ln(1-x) \end{align*}

All these series, converges if and only if the associated sequence of partial sums converges.

Last updated