Use derivative formula

For composition of functions

y=exy=ex×(x)=ex\begin{align*} y &= e^{-x} \\ \\ y^\prime &= e^{-x} \times (-x)^\prime \\ \\ &= -e^{-x} \end{align*}

Principle: get each function's derivative, then combined each other with ×\times.

For implicit function or relation

x2+y2=0x^2 + y^2 = 0
2x+2yy=0y=2x2y\begin{align*} \\ &2x + 2yy^\prime = 0 \\ \\ &y^\prime = \frac{-2x}{2y} \end{align*}

Principle: get each side derivative, adding yy^\prime to every part expression when there is y included needs to get derivative.

Get differential of a function

Normally, if we say differential isolately, what we mean is dydy.

y=sinx+xdy=cosxdx+dxdy=(cosx+1)dx\begin{align*} y &= \sin{x} + x \\ \\ dy &= \cos{x}dx + dx \\ \\ dy &= (\cos{x} + 1)dx \end{align*}

Last updated