Integration by parts
is a method to find integrals of products.
Product Ruledxd[f(x)g(x)]f(x)g(x)f(x)g(x)−∫f′(x)g(x)⋅dx∫f(x)g′(x)⋅dx→Integration by Parts=f′(x)g(x)+f(x)g′(x)=∫f′(x)g(x)⋅dx+∫f(x)g′(x)⋅dx=∫f(x)g′(x)⋅dx⇓=f(x)g(x)−∫f′(x)g(x)⋅dx ∫f(x)g′(x)dx∫xcosx⋅dx=f(x)g(x)−∫f′(x)g(x)⋅dx=xsinx−∫1sinx⋅dx=xsinx−(−cosx+C)=xsinx+cosx−C=xsinx+cosx+C ∫(lnx)dx=∫(lnx)⋅1dx∫f(x)g′(x)⋅dx=f(x)g(x)−∫f′(x)g(x)⋅dx=lnx⋅x−∫x1⋅xdx=lnx⋅x−x+C ∫f(x)g′(x)⋅dx∫x2exdx∫x2exdx∫xexdx∫x2exdx=f(x)g(x)−∫f′(x)g(x)⋅dx=x2ex−∫2xexdx=x2ex−2∫xexdx=xex−∫1exdx=xex−ex=x2ex−2(xex−ex)=x2ex−2xex+2ex ∫f(x)g′(x)dx∫excosxdx∫exsinxdx∫excosxdx2∫excosxdx∫excosxdx=f(x)g(x)−∫f′(x)g(x)dx=exsinx−∫exsinxdx=ex(−cosx)−∫ex(−cosx)dx=−excosx+∫excosxdx=exsinx−(−excosx+∫excosxdx)=exsinx+excosx−∫excosxdx=exsinx+excosx=2exsinx+excosx+C Integration by parts
is a method to find integrals of products.
Product Ruledxd[f(x)g(x)]f(x)g(x)f(x)g(x)−∫f′(x)g(x)⋅dx∫f(x)g′(x)⋅dx→Integration by Parts=f′(x)g(x)+f(x)g′(x)=∫f′(x)g(x)⋅dx+∫f(x)g′(x)⋅dx=∫f(x)g′(x)⋅dx⇓=f(x)g(x)−∫f′(x)g(x)⋅dx ∫f(x)g′(x)dx∫xcosx⋅dx=f(x)g(x)−∫f′(x)g(x)⋅dx=xsinx−∫1sinx⋅dx=xsinx−(−cosx+C)=xsinx+cosx−C=xsinx+cosx+C ∫(lnx)dx=∫(lnx)⋅1dx∫f(x)g′(x)⋅dx=f(x)g(x)−∫f′(x)g(x)⋅dx=lnx⋅x−∫x1⋅xdx=lnx⋅x−x+C ∫f(x)g′(x)⋅dx∫x2exdx∫x2exdx∫xexdx∫x2exdx=f(x)g(x)−∫f′(x)g(x)⋅dx=x2ex−∫2xexdx=x2ex−2∫xexdx=xex−∫1exdx=xex−ex=x2ex−2(xex−ex)=x2ex−2xex+2ex ∫f(x)g′(x)dx∫excosxdx∫exsinxdx∫excosxdx2∫excosxdx∫excosxdx=f(x)g(x)−∫f′(x)g(x)dx=exsinx−∫exsinxdx=ex(−cosx)−∫ex(−cosx)dx=−excosx+∫excosxdx=exsinx−(−excosx+∫excosxdx)=exsinx+excosx−∫excosxdx=exsinx+excosx=2exsinx+excosx+C The priciple of Integration by parts
is: whose derivative f′ simpler, who's gonna be f(x)