Cyclic code

(7, 4)å¾ŖēŽÆē ēš„ē”Ÿå¤šé”¹å¼ g(x)=x3+x2+1g(x)=x^3+x^2+1 , 则D(1010)ēš„ē³»å¾ŖēŽÆē ę˜Æå¤šå°‘ļ¼Ÿ

1.

1010⇒d(x)=x3+x1\begin{align*} 1010 \Rightarrow d(x) = x^3 + x^1 \end{align*}

2.

x7āˆ’4ā‹…d(x)=x3ā‹…(x3+x)=x6+x4\begin{align*} &x^{7 - 4} \cdot d(x) \\ \\ =&x^3 \cdot (x^3 + x) \\ \\ =&x^6 + x^4 \end{align*}

3.

rem[(x6+x4),g(x)]=1rem(Ā aĀ ,Ā bĀ )Ā returnsĀ theĀ remainderĀ afterĀ divisionĀ ofĀ aĀ byĀ b\begin{align*} &rem[(x^6 + x^4), g(x)] = 1 \\ \\ &\text{rem( a , b ) returns the remainder after division of a by b} \end{align*}

4.

c(x)=x6+x4+1⇓1010001\begin{align*} c(x) &= x^6 + x^4 + 1 \\ &\Downarrow \\ 10&10001 \end{align*}

hamming code

n=2rāˆ’1n = 2^r - 1

n represents the length of codes

r represents the ē›‘ē£ē ļ¼ˆäøä¼ é€’äæ”ęÆļ¼ŒåŖäøŗēŗ é”™č€ŒåŠ ēš„äøœč„æļ¼‰

Last updated

Was this helpful?