Basic formulas

trigonometric 三角函数的

We call \sqrt{} radical.

Reverse power rule

xndx=xn+1n+1+C\int x^n dx = \frac{x^{n+1}}{n+1} + C

You increase the power by one and then divide by the power + 1

Remember that this rule doesn't apply for n=1n = -1

xdx=x12dx=x12+112+1+C=x3232+C=x323+C=2x33+C\begin{align*} \int \sqrt{x} dx &= \int x^\frac{1}{2} dx \\ \\ & = \frac{x^{\frac{1}{2}+1}}{\frac{1}{2}+1} + C \\ \\ & = \frac{x^{\frac{3}{2}}}{\frac{3}{2}} + C \\ \\ & = \sqrt{x^3} \cdot \frac{2}{3} + C \\ \\ & = \frac{2\sqrt{x^3}}{3} + C \end{align*}

Indefinite integrals of sin(x)sin(x), cos(x)cos(x), and exe^x

sin(x)dx=cos(x)+Ccos(x)dx=sin(x)+Cexdx=ex+C\begin{align*} \int \sin(x) dx &= -\cos(x) + C \\ \\ \int \cos(x) dx &= \sin(x) + C \\ \\ \int e^x dx &= e^x + C \end{align*}
(sint+costet)dx=cost+sintet\begin{align*} \\ \\ &\int (\sin{t} + \cos{t} - e^t)dx \\ \\ &= -\cos{t} + \sin{t} - e^t \end{align*}

Indefinite integral of 1x\frac{1}{x}

1xdx=lnx+C\int \frac{1}{x} dx = \ln{|x|} + C

More trigonometric functions

sec2(x)dx=tan(x)+Csec(x)tan(x)dx=sec(x)+Ccsc2(x)dx=cot(x)+Ccsc(x)cot(x)dx=csc(x)+C\begin{align*} & \int \sec^2(x) dx = tan(x) + C \\ \\ & \int \sec(x) \tan(x) dx = \sec(x) + C \\ \\ & \int \csc^2(x) dx = -\cot(x) + C \\ \\ & \int \csc(x) \cot(x) dx = -\csc(x) + C \end{align*}

Exponential functions

axdx=axln(a)+C\int a^x dx = \frac{a^x}{\ln(a)} + C

Last updated