💯
University Notes
  • Introduction
  • High Level Math
    • Function, limitation, and continuity
      • What is function?
      • Two kinds of infinity
      • The limitation of a function
      • A model for getting limitation
    • Derivative and differential
      • Formulas of derivative
      • Use derivative formula
      • Goes deeper
      • Use derivative
        • Function analyzing in theory
          • First derivative
          • Second derivative
          • Domain and Extreme Value
          • Overall change
        • Derivative use in reality
    • Integration
      • Indefinite integral
        • Basic formulas
        • Use formula
        • Goes deeper
        • Integration by parts
      • Definite integral
        • Properties of definite integral
        • Second fundamental theorem of calculus
        • Multi-method for solving definite integral
    • Multivariable calculus
      • Limitation
      • Partial derivatives
      • Differential
      • Multiple integral
    • Series
    • Linear algebra
    • GaoKao
      • 1
      • The road for starting
      • Polar Coordinates
      • Tangent Line
  • Electrical Engineering
    • The Terminologys
    • DC
      • The circuit rule
      • KCL and KVL
      • Superposition
    • AC
      • Intuition
      • Resistor
      • Inductor
      • Capacitor
      • AC circuit
      • 三相电
        • 星形联结
        • 三角形联结
        • 实际电路
    • Voltage and Current Rule in Circuit
    • Response
      • Foundations
      • 零输入响应
      • 零状态响应
      • 一阶电路的全响应
  • Analog Electronics
    • Technical terms 1
    • DC stable source circuit 的分析与应用
      • 二极管的特性与应用
        • 半导体
        • PN junction
        • Diode
        • 测试二极管
      • 整流滤波电路的分析与应用
        • Rectifier circuit
      • 直流稳压电路的分析
        • Zener diode
        • Shunt voltage regulators
    • Thyristor
    • Technical terms 2
    • Amplifying circuit
      • Bipolar Junction Transistor
      • Common Emitter Configuration
      • Biasing
      • Analysis
      • Mess
      • Negative-feedback amplifier
      • Integrated Operational Amplifier
    • Algorithms
      • What's the ouput of a voltage rectifier circuit
      • PNP or NPN
      • Judging the state of a BJT
      • What's common in BJT
      • Does a amplifying circuit normal
      • What's the feedback type
      • What kind of distortion you are encounter
  • Digital Electronic Technology
    • Logic Gate
    • Logic expressions
    • Karnaugh map
    • Number system
    • Multiplexer
    • Flip-flop
  • Principles of Communications
    • Overviews
    • PCM
    • HDB3
    • Modulations
    • Cyclic code
  • Data Communications and Networking
    • Something about IPv4
  • Micro Control System 51 Series
    • The Delay function
    • The Interrupt function
  • Maintenance of Railway Optical Cable Lines
    • Questions
    • Pictures
  • Mobile Communications
    • Concepts
    • Coding and Modulation
    • Key Technologies
    • Mobile communication network structure
    • Radio wave Propagation and Interference
    • GSM
    • CDMA
    • GPRS
    • 3G
    • 4G
    • Base Station Maintenance
  • Multimedia Communication
    • Concept of Multimedia
    • Compression
    • Lossless Compression
    • Audio
    • Lossy Audio Coding
    • Graph Compression
    • All for the exam
  • Power system for Communication Devices
    • Overview
    • AC power Distribution Panel
    • UPS
    • HF Switched-mode Power Supply
    • Battery
    • Earthing or Use Lightning Arrester
    • Power Supply Monitoring System
    • All for the exam
  • Optical fiber Communication system
    • What is Optical fiber Communication system
      • Prepare
      • Something About Optical fiber
      • Passive Optical Devices
      • Active Optical Devices
      • Optical transmitter Test
      • Optical receiver Test
      • Compose an Optical Communication System
    • SDH (Synchronous Digital Hierarchy)
      • Frame Structure of SDH
      • SDH Equipments
      • Clock System
      • ZXONM E300 Practice
      • SDH protection
    • WDM (Wavelength-Division Multiplexing)
    • OTN (Optical Transport Network)
      • OverHead of OTN
      • OTN Alarms & Errors
      • Do it again, what's happened?
  • Communication Tech English
    • Fundamentals of Electricity
    • Digital Communications
    • Optical Communications
  • High-speed railway Communication Technology
    • Overview
    • Base Knowledge
    • FH98
    • MDS3400
    • Everything is for the exam
  • GSM for Railway
    • Overview
    • Wired Parts
    • Digital dispatch Communication System
    • Basic Knowledge of GSM-R
    • Key technologies for GSM-R
    • Structure of GSM-R
    • GSM-R Network Mode
    • Wireless Channels for GSM-R
    • Mobility Management
    • Connection Management
    • Security Management
    • GPRS
    • GSM-R/GPRS Wireless Access Platform
    • GSM-R Features
    • GSM-R Numbering Plan
    • ASCI
  • Network Configuration Training
    • Words I have learned
  • Broadband Access Technology
    • Using Copper Line
    • Using Optical Fiber
    • Wireless
    • All for the test
  • CIR
    • Basci Knowledge
    • Testing Equipment
    • The Structure of CIR
    • All for the exam
  • LTE
  • Script for ChaoXing
  • Transmission and access network
Powered by GitBook
On this page
  • Priciple
  • Simple one
  • Complex one
  • Conclusion

Was this helpful?

  1. High Level Math
  2. Integration
  3. Indefinite integral

Goes deeper

Priciple

With goes down to those hard problems, I want to let you know a priciple that we use in general math problem:

We always split hard problem to multiple easy problems or step by step simplify hard problem.

In computer science, we named it Divide & Conquer (D&C algorithms)

Simple one

∫1a2+x2dx=1a2∫11+(xa)2dx//divide a2in denominator while keep equation balance=1a∫11+(xa)2d(xa)=1a⋅arctan⁡xa+C//(arctan⁡x)′=11+x2\begin{align*} &\int \frac{1}{a^2 + x^2} dx \\ \\ =& \frac{1}{a^2} \int \frac{1}{1 + (\frac{x}{a})^2} dx &\text{//divide } a^2 \text{in denominator while keep equation balance} \\ \\ =& \frac{1}{a} \int \frac{1}{1 + (\frac{x}{a})^2} d(\frac{x}{a}) \\ \\ =& \frac{1}{a} \cdot \arctan{\frac{x}{a}} + C &\text{//}(\arctan{x})^\prime = \frac{1}{1 + x^2} \end{align*}===​∫a2+x21​dxa21​∫1+(ax​)21​dxa1​∫1+(ax​)21​d(ax​)a1​⋅arctanax​+C​//divide a2in denominator while keep equation balance//(arctanx)′=1+x21​​
∫1a2−x2dx,(a>0)=1a∫11−(xa)2dx=1∫11−(xa)2d(xa)//divide a in x of dx while keep equation balance=arcsin⁡(xa)+C\begin{align*} \\ \\ \\ &\int \frac{1}{\sqrt{a^2 - x^2}} dx ,(a > 0) \\ \\ =& \frac{1}{a} \int \frac{1}{\sqrt{1-(\frac{x}{a})^2}} dx \\ \\ =& 1 \int \frac{1}{\sqrt{1-(\frac{x}{a})^2}} d(\frac{x}{a}) &\text{//divide } a \text{ in x of dx while keep equation balance} \\ \\ =& \arcsin(\frac{x}{a}) + C \\ \\ \\ \end{align*}===​∫a2−x2​1​dx,(a>0)a1​∫1−(ax​)2​1​dx1∫1−(ax​)2​1​d(ax​)arcsin(ax​)+C​//divide a in x of dx while keep equation balance​

Let's try to analyze this equation:

1a2∫11+(xa)2dx=aa2∫11+(xa)2d(xa)\frac{1}{a^2} \int \frac{1}{1 + (\frac{x}{a})^2} dx = \frac{a}{a^2} \int \frac{1}{1 + (\frac{x}{a})^2} d(\frac{x}{a})a21​∫1+(ax​)21​dx=a2a​∫1+(ax​)21​d(ax​)

We knew that xxx of dxdxdx is the original function, so do 1a2\frac{1}{a^2}a21​. Because two of them in a same original function, when xxx becomes xa\frac{x}{a}ax​, 1a2\frac{1}{a^2}a21​ have to times aaa.

As for ∫11+(xa)2\int \frac{1}{1 + (\frac{x}{a})^2}∫1+(ax​)21​, it must interact with dxdxdx, then it becomes original function.

You can see ∫(...)d\int (...) d∫(...)d as a whole thing. you also can extract a constant from it, we will talk about it later.

∫1x2−a2dx,(a≠0)=∫1(x+a)(x−a)dx=12a∫(1x−a−1x+a)dx//1x−a−1x+a=x+a−x+a(x−a)(x+a)=2a(x−a)(x+a)// Because 2a≠1, divide 2a, that is, times12ain the beginning=12a(∫1x−adx−∫1x+adx)=12a(∫1x−ad(x−a)−∫1x+ad(x−a))//don’t forget the basic temple for solving integral eqution=12aln⁡∣x−ax+a∣+C\begin{align*} \\ \\ \\ &\int \frac{1}{x^2 - a^2} dx ,(a \neq 0) \\ \\ =& \int \frac{1}{(x+a)(x-a)} dx \\ \\ =& \frac{1}{2a} \int (\frac{1}{x-a} - \frac{1}{x+a}) dx \\ \\ \text{//}& \frac{1}{x-a} - \frac{1}{x+a} = \frac{x+a-x+a}{(x-a)(x+a)} = \frac{2a}{(x-a)(x+a)} \\ \\ \text{//}&\text{ Because }2a \neq 1 \text{, divide 2a, that is, times} \frac{1}{2a} \text{in the beginning} \\ \\ =& \frac{1}{2a}(\int \frac{1}{x-a} dx - \int \frac{1}{x+a} dx) \\ \\ =& \frac{1}{2a}(\int \frac{1}{x-a} d(x-a) - \int \frac{1}{x+a} d(x-a)) &\text{//don't forget the basic temple for solving integral eqution} \\ \\ =& \frac{1}{2a} \ln{|\frac{x-a}{x+a}|} + C \\ \\ \\ \end{align*}==////===​∫x2−a21​dx,(a=0)∫(x+a)(x−a)1​dx2a1​∫(x−a1​−x+a1​)dxx−a1​−x+a1​=(x−a)(x+a)x+a−x+a​=(x−a)(x+a)2a​ Because 2a=1, divide 2a, that is, times2a1​in the beginning2a1​(∫x−a1​dx−∫x+a1​dx)2a1​(∫x−a1​d(x−a)−∫x+a1​d(x−a))2a1​ln∣x+ax−a​∣+C​//don’t forget the basic temple for solving integral eqution​

Complex one

∫11−xdxmake x=t , then x=t2=∫11−td(t2)=∫2t1−td(t)=2∫t1−td(t)=−2∫tt−1d(t)=−2∫t−1+1t−1d(t)=−2∫t−1t−1dt−2∫1t−1dt=−2∫1dt−2∫1t−1dt=−2t−2ln⁡∣t−1∣+C=−2x−2ln⁡∣x−1∣+C\begin{align*} &\int \frac{1}{1 - \sqrt{x}} dx \\ \\ & \text{make } \sqrt{x}=t \text{ , then } x=t^2 \\ \\ =& \int \frac{1}{1-t} d(t^2) \\ \\ =& \int \frac{2t}{1-t} d(t) \\ \\ =& 2 \int \frac{t}{1-t} d(t) \\ \\ =& -2 \int \frac{t}{t-1} d(t) \\ \\ =& -2 \int \frac{t-1+1}{t-1} d(t) \\ \\ =& -2 \int \frac{t-1}{t-1} dt -2 \int \frac{1}{t-1} dt \\ \\ =& -2 \int 1 dt -2 \int \frac{1}{t-1} dt \\ \\ =& -2t - 2 \ln{|t-1|} + C \\ \\ =& -2\sqrt{x} - 2 \ln{|\sqrt{x}-1|} + C \end{align*}=========​∫1−x​1​dxmake x​=t , then x=t2∫1−t1​d(t2)∫1−t2t​d(t)2∫1−tt​d(t)−2∫t−1t​d(t)−2∫t−1t−1+1​d(t)−2∫t−1t−1​dt−2∫t−11​dt−2∫1dt−2∫t−11​dt−2t−2ln∣t−1∣+C−2x​−2ln∣x​−1∣+C​

Conclusion

  1. Keep equation balance

  2. Best way to deal with \sqrt{}​ is to replace it with a symbol

  3. Molecular is a constant is more convenient for us to solve equation, especially when it is 111 (for example: extract a constant out, and put it in front of ∫\int∫)

PreviousUse formulaNextIntegration by parts

Last updated 5 years ago

Was this helpful?