Properties of definite integral

Rules

Sum/Difference

ab[f(x)±g(x)]dx=abf(x)dx±abg(x)dx\int_a^b [f(x) \pm g(x)] dx = \int_a^b f(x) dx \pm \int_a^b g(x) dx

Constant multiple

abkf(x)dx=kabf(x)dx\int_a^b k \cdot f(x) dx = k \int_a^b f(x) dx

Reverse interval

abf(x)dx=baf(x)dx\int_a^b f(x) dx = - \int_b^a f(x) dx

Zero-length interval

aaf(x)dx=0\int_a^a f(x) dx = 0

Adding intervals

abf(x)dx+bcf(x)dx=acf(x)dx\int_a^b f(x) dx + \int_b^c f(x) dx = \int_a^c f(x) dx

Example

Given 31g(x)dx=6\int_{-3}^{1} g(x) dx = 6 and 15g(x)dx=8\int_{1}^{5} g(x) dx = 8

35g(x)dx=6+8=14\int_{-3}^5 g(x) dx = 6 + 8 = 14

Given 13f(x)dx=2\int_{-1}^{3} f(x) dx = -2 and 13g(x)dx=5\int_{-1}^{3} g(x) dx = 5

13(3f(x)2g(x))dx=610=16\int_{-1}^{3} (3f(x) - 2g(x)) dx = -6 - 10 = -16

Given 51g(x)dx=3\int_{-5}^{1} g(x) dx = 3 and 31g(x)dx=7\int_{-3}^{1} g(x) dx = 7

53g(x)dx=37=4\int_{-5}^{-3} g(x) dx = 3 - 7 = -4

Last updated