Last updated 5 years ago
Was this helpful?
Given ∫−31g(x)dx=6\int_{-3}^{1} g(x) dx = 6∫−31g(x)dx=6 and ∫15g(x)dx=8\int_{1}^{5} g(x) dx = 8∫15g(x)dx=8
∫−35g(x)dx=6+8=14\int_{-3}^5 g(x) dx = 6 + 8 = 14∫−35g(x)dx=6+8=14
Given ∫−13f(x)dx=−2\int_{-1}^{3} f(x) dx = -2∫−13f(x)dx=−2 and ∫−13g(x)dx=5\int_{-1}^{3} g(x) dx = 5∫−13g(x)dx=5
∫−13(3f(x)−2g(x))dx=−6−10=−16\int_{-1}^{3} (3f(x) - 2g(x)) dx = -6 - 10 = -16∫−13(3f(x)−2g(x))dx=−6−10=−16
Given ∫−51g(x)dx=3\int_{-5}^{1} g(x) dx = 3∫−51g(x)dx=3 and ∫−31g(x)dx=7\int_{-3}^{1} g(x) dx = 7∫−31g(x)dx=7
∫−5−3g(x)dx=3−7=−4\int_{-5}^{-3} g(x) dx = 3 - 7 = -4∫−5−3g(x)dx=3−7=−4