Properties of definite integral
Rules
Sum/Difference
∫ab[f(x)±g(x)]dx=∫abf(x)dx±∫abg(x)dx Constant multiple
∫abk⋅f(x)dx=k∫abf(x)dx Reverse interval
∫abf(x)dx=−∫baf(x)dx Zero-length interval
∫aaf(x)dx=0 Adding intervals
∫abf(x)dx+∫bcf(x)dx=∫acf(x)dx Example
Given ∫−31g(x)dx=6 and ∫15g(x)dx=8
∫−35g(x)dx=6+8=14
Given ∫−13f(x)dx=−2 and ∫−13g(x)dx=5
∫−13(3f(x)−2g(x))dx=−6−10=−16
Given ∫−51g(x)dx=3 and ∫−31g(x)dx=7
∫−5−3g(x)dx=3−7=−4