💯
University Notes
  • Introduction
  • High Level Math
    • Function, limitation, and continuity
      • What is function?
      • Two kinds of infinity
      • The limitation of a function
      • A model for getting limitation
    • Derivative and differential
      • Formulas of derivative
      • Use derivative formula
      • Goes deeper
      • Use derivative
        • Function analyzing in theory
          • First derivative
          • Second derivative
          • Domain and Extreme Value
          • Overall change
        • Derivative use in reality
    • Integration
      • Indefinite integral
        • Basic formulas
        • Use formula
        • Goes deeper
        • Integration by parts
      • Definite integral
        • Properties of definite integral
        • Second fundamental theorem of calculus
        • Multi-method for solving definite integral
    • Multivariable calculus
      • Limitation
      • Partial derivatives
      • Differential
      • Multiple integral
    • Series
    • Linear algebra
    • GaoKao
      • 1
      • The road for starting
      • Polar Coordinates
      • Tangent Line
  • Electrical Engineering
    • The Terminologys
    • DC
      • The circuit rule
      • KCL and KVL
      • Superposition
    • AC
      • Intuition
      • Resistor
      • Inductor
      • Capacitor
      • AC circuit
      • 三相电
        • 星形联结
        • 三角形联结
        • 实际电路
    • Voltage and Current Rule in Circuit
    • Response
      • Foundations
      • 零输入响应
      • 零状态响应
      • 一阶电路的全响应
  • Analog Electronics
    • Technical terms 1
    • DC stable source circuit 的分析与应用
      • 二极管的特性与应用
        • 半导体
        • PN junction
        • Diode
        • 测试二极管
      • 整流滤波电路的分析与应用
        • Rectifier circuit
      • 直流稳压电路的分析
        • Zener diode
        • Shunt voltage regulators
    • Thyristor
    • Technical terms 2
    • Amplifying circuit
      • Bipolar Junction Transistor
      • Common Emitter Configuration
      • Biasing
      • Analysis
      • Mess
      • Negative-feedback amplifier
      • Integrated Operational Amplifier
    • Algorithms
      • What's the ouput of a voltage rectifier circuit
      • PNP or NPN
      • Judging the state of a BJT
      • What's common in BJT
      • Does a amplifying circuit normal
      • What's the feedback type
      • What kind of distortion you are encounter
  • Digital Electronic Technology
    • Logic Gate
    • Logic expressions
    • Karnaugh map
    • Number system
    • Multiplexer
    • Flip-flop
  • Principles of Communications
    • Overviews
    • PCM
    • HDB3
    • Modulations
    • Cyclic code
  • Data Communications and Networking
    • Something about IPv4
  • Micro Control System 51 Series
    • The Delay function
    • The Interrupt function
  • Maintenance of Railway Optical Cable Lines
    • Questions
    • Pictures
  • Mobile Communications
    • Concepts
    • Coding and Modulation
    • Key Technologies
    • Mobile communication network structure
    • Radio wave Propagation and Interference
    • GSM
    • CDMA
    • GPRS
    • 3G
    • 4G
    • Base Station Maintenance
  • Multimedia Communication
    • Concept of Multimedia
    • Compression
    • Lossless Compression
    • Audio
    • Lossy Audio Coding
    • Graph Compression
    • All for the exam
  • Power system for Communication Devices
    • Overview
    • AC power Distribution Panel
    • UPS
    • HF Switched-mode Power Supply
    • Battery
    • Earthing or Use Lightning Arrester
    • Power Supply Monitoring System
    • All for the exam
  • Optical fiber Communication system
    • What is Optical fiber Communication system
      • Prepare
      • Something About Optical fiber
      • Passive Optical Devices
      • Active Optical Devices
      • Optical transmitter Test
      • Optical receiver Test
      • Compose an Optical Communication System
    • SDH (Synchronous Digital Hierarchy)
      • Frame Structure of SDH
      • SDH Equipments
      • Clock System
      • ZXONM E300 Practice
      • SDH protection
    • WDM (Wavelength-Division Multiplexing)
    • OTN (Optical Transport Network)
      • OverHead of OTN
      • OTN Alarms & Errors
      • Do it again, what's happened?
  • Communication Tech English
    • Fundamentals of Electricity
    • Digital Communications
    • Optical Communications
  • High-speed railway Communication Technology
    • Overview
    • Base Knowledge
    • FH98
    • MDS3400
    • Everything is for the exam
  • GSM for Railway
    • Overview
    • Wired Parts
    • Digital dispatch Communication System
    • Basic Knowledge of GSM-R
    • Key technologies for GSM-R
    • Structure of GSM-R
    • GSM-R Network Mode
    • Wireless Channels for GSM-R
    • Mobility Management
    • Connection Management
    • Security Management
    • GPRS
    • GSM-R/GPRS Wireless Access Platform
    • GSM-R Features
    • GSM-R Numbering Plan
    • ASCI
  • Network Configuration Training
    • Words I have learned
  • Broadband Access Technology
    • Using Copper Line
    • Using Optical Fiber
    • Wireless
    • All for the test
  • CIR
    • Basci Knowledge
    • Testing Equipment
    • The Structure of CIR
    • All for the exam
  • LTE
  • Script for ChaoXing
  • Transmission and access network
Powered by GitBook
On this page

Was this helpful?

  1. Electrical Engineering
  2. Response

零输入响应

PreviousFoundationsNext零状态响应

Last updated 6 years ago

Was this helpful?

零输入响应: 把输入的电压或电流降为零,看电路中的元件有什么反应(主要看电感和电容)。

本质上就是电路从有电到没电后的一段时间发生了什么,这时我们求出的东西不是一个具体的值,而是一个关于时间t的函数。这个函数反映了电感或电容的电压值或电流值在断电后随时间的变化情况。

  1. 首先我们应该明确的一点是:电感的电流或电容的电压在电路发生改变前和电路发生改变后都不会改变。

  2. 电感和电容都是储能元件,它们都会在断电之后起一个临时电源的作用。

  3. 他们存储的电会随时间而流逝,我们可以通过数学式把这个过程精确地表示出来。

其关于时间t的表达式=改变后的稳态值⋅e−tτ如果是 Capacitor 在释放电, τ=R⋅C如果是 Inductor 在释放电, τ=LR\begin{align*} \\ & 其关于时间 t 的表达式 = 改变后的稳态值 \cdot e^{- \frac{t}{\tau}} \\ \\ & \text{如果是 Capacitor 在释放电, } \tau = R \cdot C \\ \\ & \text{如果是 Inductor 在释放电, } \tau = \frac{L}{R} \\ \\ \end{align*}​其关于时间t的表达式=改变后的稳态值⋅e−τt​如果是 Capacitor 在释放电, τ=R⋅C如果是 Inductor 在释放电, τ=RL​​

注意!

这里的 RRR 是指:相对于储电的Capacitor或Inductor而言,以Capacitor或Inductor为电流出发点,流过的电阻总值

这里的 CCC 和 LLL 是分别指的是Capacitance value和 Inductance value

图示电路原已达到稳态,在 t=0t=0t=0 时开关 SSS 合上。试求 t≥0t \geq 0t≥0 时 的电容电压 uC(t)u_C(t)uC​(t) 及电流 iC(t)i_C(t)iC​(t)

    \draw (0, 0) to [I=$10mA$](0, 4)
    to (1, 4)
    (1, 4) to [closing switch, l=$S$](1, 0) to (0, 0)
    (1, 4) to [R=$6k\Omega$](3, 4)

    (3, 4) to [R=$3k\Omega$](3, 0) to (1, 0)
    (3, 4) to [short, i=$i_C$](5, 4)
    to [C, l_=$5\mu F$, v^=$u_C$](5, 2)
    to [R=$2k\Omega$](5, 0)
    to (3, 0);
1. When switch off, 电容遇直流电断路uC(0−)=10mA⋅3kΩ=30VuC(0+)=uC(0−)=30V2. Accrding to 公式τ=R⋅C=(3kΩ // 6kΩ+2kΩ)⋅5μF=4kΩ⋅5μF=20×10−3suC(t)=uC(0+)⋅e−tτ=30⋅e−t20×10−3=30⋅e−50tV3. Accrding to ohm’s law, with Capacitor release poweriC=−uC(t)R⋅e−50t=−304⋅e−50t=−7.5⋅e−50tA\begin{align*} \\ \text{1. } & \text{When switch off, 电容遇直流电断路} \\ \\ & u_C(0_-) = 10mA \cdot 3k \Omega = 30V \\ \\ & u_C(0_+) = u_C(0_-) = 30V \\ \\ \text{2. } & \text{Accrding to 公式} \\ \\ & \tau = R \cdot C = (3k \Omega \text{ // } 6k \Omega + 2k \Omega) \cdot 5\mu F \\ \\ & = 4k \Omega \cdot 5\mu F = 20 \times 10^{-3} s \\ \\ & u_C(t) = u_C(0_+) \cdot e^{- \frac{t}{\tau}} = 30 \cdot e^{-\frac{t}{20 \times 10^{-3}}} \\ \\ & = 30 \cdot e^{-50t} V \\ \\ \text{3. } & \text{Accrding to ohm's law, with Capacitor release power} \\ \\ & i_C =- \frac{u_C(t)}{R} \cdot e^{-50t} = - \frac{30}{4} \cdot e^{-50t} \\ \\ & = -7.5 \cdot e^{-50t} A \end{align*}1. 2. 3. ​When switch off, 电容遇直流电断路uC​(0−​)=10mA⋅3kΩ=30VuC​(0+​)=uC​(0−​)=30VAccrding to 公式τ=R⋅C=(3kΩ // 6kΩ+2kΩ)⋅5μF=4kΩ⋅5μF=20×10−3suC​(t)=uC​(0+​)⋅e−τt​=30⋅e−20×10−3t​=30⋅e−50tVAccrding to ohm’s law, with Capacitor release poweriC​=−RuC​(t)​⋅e−50t=−430​⋅e−50t=−7.5⋅e−50tA​