polynomial å¤é”¹å¼
Basically, there are two types of indefinite integral.
One is polynomial
, which composed by + and ā
Another is composite function
, which composed by Ć and Ć·
For the first type of integral, we use basic formula to each part of it directly:
==āā«x3x2ā2x+1ādxā«(3xā2+x1ā)dx23āx2ā2x+lnā£xā£+Cā For the second one, oh my god, it's very complicate.
Here's a basic template:
ā«f(g(x))ā
gā²(x)dxā«f(g(x))ā
dg(x)ā«f(u)ā
du Let's do some exercise:
====āā«xeāx2ā
dxā«eāx2ā
xdx(ā21ā)ā«eāx2ā
(ā2)xdx(ā21ā)ā«eāx2ā
d(āx2)(ā21ā)eāx2+Cā//compositeĀ functionĀ inĀ front//findĀ aĀ wayĀ toĀ makeĀ xĀ =Ā (āx2)ā²=ā2xĀ whileĀ keepingĀ equationāsĀ balance//weĀ knewĀ gā²(x)dx=dg(x)//seeĀ āx2Ā asĀ aĀ part,Ā thenĀ applyĀ basicĀ integralĀ formulaā ====āā«cos(1ā3x)ā
dxā«cos(1ā3x)ā
1dx(ā31ā)ā«cos(1ā3x)ā
(ā3)1dx(ā31ā)ā«cos(1ā3x)ā
d(1ā3x)(ā31ā)sin(1ā3x)+Cā//donātĀ forgetĀ 1//findĀ aĀ wayĀ toĀ makeĀ 1Ā toĀ -3Ā whileĀ keepingĀ equationāsĀ balance//dxdyādx=dy//seeĀ 1-3xĀ asĀ aĀ part,Ā thenĀ useĀ basicĀ formulaā From these exercises, we know a criticle principle is: x of dx is the original function, it can be just a x, it also can be, for example, x2.
ā«(x)dx2=ā«((x2)ā²ā
x)dx=ā«(2xā
x)dx=ā«(2x2)dxā āā«(1ā
x)dxāwhereāsĀ 1Ā comeĀ from?Ā xā²=1ā