💯
University Notes
  • Introduction
  • High Level Math
    • Function, limitation, and continuity
      • What is function?
      • Two kinds of infinity
      • The limitation of a function
      • A model for getting limitation
    • Derivative and differential
      • Formulas of derivative
      • Use derivative formula
      • Goes deeper
      • Use derivative
        • Function analyzing in theory
          • First derivative
          • Second derivative
          • Domain and Extreme Value
          • Overall change
        • Derivative use in reality
    • Integration
      • Indefinite integral
        • Basic formulas
        • Use formula
        • Goes deeper
        • Integration by parts
      • Definite integral
        • Properties of definite integral
        • Second fundamental theorem of calculus
        • Multi-method for solving definite integral
    • Multivariable calculus
      • Limitation
      • Partial derivatives
      • Differential
      • Multiple integral
    • Series
    • Linear algebra
    • GaoKao
      • 1
      • The road for starting
      • Polar Coordinates
      • Tangent Line
  • Electrical Engineering
    • The Terminologys
    • DC
      • The circuit rule
      • KCL and KVL
      • Superposition
    • AC
      • Intuition
      • Resistor
      • Inductor
      • Capacitor
      • AC circuit
      • 三相电
        • 星形联结
        • 三角形联结
        • 实际电路
    • Voltage and Current Rule in Circuit
    • Response
      • Foundations
      • 零输入响应
      • 零状态响应
      • 一阶电路的全响应
  • Analog Electronics
    • Technical terms 1
    • DC stable source circuit 的分析与应用
      • 二极管的特性与应用
        • 半导体
        • PN junction
        • Diode
        • 测试二极管
      • 整流滤波电路的分析与应用
        • Rectifier circuit
      • 直流稳压电路的分析
        • Zener diode
        • Shunt voltage regulators
    • Thyristor
    • Technical terms 2
    • Amplifying circuit
      • Bipolar Junction Transistor
      • Common Emitter Configuration
      • Biasing
      • Analysis
      • Mess
      • Negative-feedback amplifier
      • Integrated Operational Amplifier
    • Algorithms
      • What's the ouput of a voltage rectifier circuit
      • PNP or NPN
      • Judging the state of a BJT
      • What's common in BJT
      • Does a amplifying circuit normal
      • What's the feedback type
      • What kind of distortion you are encounter
  • Digital Electronic Technology
    • Logic Gate
    • Logic expressions
    • Karnaugh map
    • Number system
    • Multiplexer
    • Flip-flop
  • Principles of Communications
    • Overviews
    • PCM
    • HDB3
    • Modulations
    • Cyclic code
  • Data Communications and Networking
    • Something about IPv4
  • Micro Control System 51 Series
    • The Delay function
    • The Interrupt function
  • Maintenance of Railway Optical Cable Lines
    • Questions
    • Pictures
  • Mobile Communications
    • Concepts
    • Coding and Modulation
    • Key Technologies
    • Mobile communication network structure
    • Radio wave Propagation and Interference
    • GSM
    • CDMA
    • GPRS
    • 3G
    • 4G
    • Base Station Maintenance
  • Multimedia Communication
    • Concept of Multimedia
    • Compression
    • Lossless Compression
    • Audio
    • Lossy Audio Coding
    • Graph Compression
    • All for the exam
  • Power system for Communication Devices
    • Overview
    • AC power Distribution Panel
    • UPS
    • HF Switched-mode Power Supply
    • Battery
    • Earthing or Use Lightning Arrester
    • Power Supply Monitoring System
    • All for the exam
  • Optical fiber Communication system
    • What is Optical fiber Communication system
      • Prepare
      • Something About Optical fiber
      • Passive Optical Devices
      • Active Optical Devices
      • Optical transmitter Test
      • Optical receiver Test
      • Compose an Optical Communication System
    • SDH (Synchronous Digital Hierarchy)
      • Frame Structure of SDH
      • SDH Equipments
      • Clock System
      • ZXONM E300 Practice
      • SDH protection
    • WDM (Wavelength-Division Multiplexing)
    • OTN (Optical Transport Network)
      • OverHead of OTN
      • OTN Alarms & Errors
      • Do it again, what's happened?
  • Communication Tech English
    • Fundamentals of Electricity
    • Digital Communications
    • Optical Communications
  • High-speed railway Communication Technology
    • Overview
    • Base Knowledge
    • FH98
    • MDS3400
    • Everything is for the exam
  • GSM for Railway
    • Overview
    • Wired Parts
    • Digital dispatch Communication System
    • Basic Knowledge of GSM-R
    • Key technologies for GSM-R
    • Structure of GSM-R
    • GSM-R Network Mode
    • Wireless Channels for GSM-R
    • Mobility Management
    • Connection Management
    • Security Management
    • GPRS
    • GSM-R/GPRS Wireless Access Platform
    • GSM-R Features
    • GSM-R Numbering Plan
    • ASCI
  • Network Configuration Training
    • Words I have learned
  • Broadband Access Technology
    • Using Copper Line
    • Using Optical Fiber
    • Wireless
    • All for the test
  • CIR
    • Basci Knowledge
    • Testing Equipment
    • The Structure of CIR
    • All for the exam
  • LTE
  • Script for ChaoXing
  • Transmission and access network
Powered by GitBook
On this page

Was this helpful?

  1. High Level Math
  2. Integration
  3. Indefinite integral

Use formula

PreviousBasic formulasNextGoes deeper

Last updated 5 years ago

Was this helpful?

polynomial 多项式

Basically, there are two types of indefinite integral.

One is polynomial, which composed by +++ and −-−

Another is composite function, which composed by ×\times× and ÷\div÷

For the first type of integral, we use basic formula to each part of it directly:

∫3x2−2x+1xdx=∫(3x−2+1x)dx=32x2−2x+ln⁡∣x∣+C\begin{align*} &\int \frac{3x^2 - 2x + 1}{x} dx \\ \\ =& \int (3x - 2 + \frac{1}{x}) dx \\ \\ =& \frac{3}{2}x^2 - 2x + \ln{|x|} + C \end{align*}==​∫x3x2−2x+1​dx∫(3x−2+x1​)dx23​x2−2x+ln∣x∣+C​

For the second one, oh my god, it's very complicate.

Here's a basic template:

∫f(g(x))⋅g′(x)dx∫f(g(x))⋅dg(x)∫f(u)⋅du\int f(g(x)) \cdot g^\prime(x)dx \\ \\ \int f(g(x)) \cdot dg(x) \\ \\ \int f(u) \cdot du∫f(g(x))⋅g′(x)dx∫f(g(x))⋅dg(x)∫f(u)⋅du

Let's do some exercise:

∫xe−x2⋅dx=∫e−x2⋅xdx//composite function in front=(−12)∫e−x2⋅(−2)xdx//find a way to make x = (−x2)′=−2x while keeping equation’s balance=(−12)∫e−x2⋅d(−x2)//we knew g′(x)dx=dg(x)=(−12)e−x2+C//see −x2 as a part, then apply basic integral formula\begin{align*} &\int xe^{-x^2} \cdot dx \\ \\ =& \int e^{-x^2} \cdot x dx &\text{//composite function in front} \\ \\ =& (-\frac{1}{2}) \int e^{-x^2} \cdot (-2)x dx &\text{//find a way to make x = } (-x^2)^\prime = -2x \text{ while keeping equation's balance} \\ \\ =& (-\frac{1}{2}) \int e^{-x^2} \cdot d(-x^2) &\text{//we knew }g^\prime(x)dx = dg(x) \\ \\ =& (-\frac{1}{2}) e^{-x^2} + C &\text{//see } -x^2 \text{ as a part, then apply basic integral formula} \end{align*}====​∫xe−x2⋅dx∫e−x2⋅xdx(−21​)∫e−x2⋅(−2)xdx(−21​)∫e−x2⋅d(−x2)(−21​)e−x2+C​//composite function in front//find a way to make x = (−x2)′=−2x while keeping equation’s balance//we knew g′(x)dx=dg(x)//see −x2 as a part, then apply basic integral formula​
∫cos⁡(1−3x)⋅dx=∫cos⁡(1−3x)⋅1dx//don’t forget 1=(−13)∫cos⁡(1−3x)⋅(−3)1dx//find a way to make 1 to -3 while keeping equation’s balance=(−13)∫cos⁡(1−3x)⋅d(1−3x)//dydxdx=dy=(−13)sin⁡(1−3x)+C//see 1-3x as a part, then use basic formula\begin{align*} \\ \\ \\ &\int \cos(1-3x) \cdot dx \\ \\ =&\int \cos(1-3x) \cdot 1dx &\text{//don't forget 1} \\ \\ =& (-\frac{1}{3})\int \cos(1-3x) \cdot (-3)1dx &\text{//find a way to make 1 to -3 while keeping equation's balance} \\ \\ =& (-\frac{1}{3})\int \cos(1-3x) \cdot d(1-3x) &\text{//} \frac{dy}{dx} dx = dy \\ \\ =& (-\frac{1}{3}) \sin(1-3x) + C &\text{//see 1-3x as a part, then use basic formula} \\ \\ \\ \end{align*}====​∫cos(1−3x)⋅dx∫cos(1−3x)⋅1dx(−31​)∫cos(1−3x)⋅(−3)1dx(−31​)∫cos(1−3x)⋅d(1−3x)(−31​)sin(1−3x)+C​//don’t forget 1//find a way to make 1 to -3 while keeping equation’s balance//dxdy​dx=dy//see 1-3x as a part, then use basic formula​

From these exercises, we know a criticle principle is: xxx of dxdxdx is the original function, it can be just a xxx, it also can be, for example, x2x^2x2.

∫(x)dx2=∫((x2)′⋅x)dx=∫(2x⋅x)dx=∫(2x2)dx\begin{align*} \int (x) dx^2 = \int ((x^2)^\prime \cdot x) dx = \int (2x \cdot x) dx = \int (2x^2) dx \end{align*}∫(x)dx2=∫((x2)′⋅x)dx=∫(2x⋅x)dx=∫(2x2)dx​
∫(1⋅x)dxwhere’s 1 come from? x′=1\begin{align*} \\ &\int (1 \cdot x) dx &\text{where's 1 come from? } x^\prime = 1 \end{align*}​∫(1⋅x)dx​where’s 1 come from? x′=1​