💯
University Notes
Search...
Ctrl + K
High Level Math
Integration
Definite integral
Multi-method for solving definite integral
Integration by parts
∫
f
(
x
)
g
′
(
x
)
d
x
=
f
(
x
)
g
(
x
)
−
∫
f
′
(
x
)
g
(
x
)
⋅
d
x
⇓
∫
a
b
f
(
x
)
g
′
(
x
)
d
x
=
f
(
x
)
g
(
x
)
∣
a
b
−
∫
a
b
f
′
(
x
)
g
(
x
)
⋅
d
x
\begin{align*} \\ \\ \int f(x)g^\prime(x)dx &= f(x)g(x) - \int f^\prime(x)g(x) \cdot dx \\ \\ &\Downarrow \\ \\ \int_a^b f(x)g^\prime(x)dx &= f(x)g(x)|_a^b - \int_a^b f^\prime(x)g(x) \cdot dx \end{align*}
∫
f
(
x
)
g
′
(
x
)
d
x
∫
a
b
f
(
x
)
g
′
(
x
)
d
x
=
f
(
x
)
g
(
x
)
−
∫
f
′
(
x
)
g
(
x
)
⋅
d
x
⇓
=
f
(
x
)
g
(
x
)
∣
a
b
−
∫
a
b
f
′
(
x
)
g
(
x
)
⋅
d
x
Substitution method
∫
1
2
1
5
x
−
1
⋅
d
x
t
=
5
x
−
1
t
2
=
5
x
−
1
t
2
+
1
5
=
x
d
[
1
5
(
t
2
+
1
)
]
=
d
x
1
5
(
2
t
)
d
t
=
d
x
x
∣
1
→
2
t
∣
5
⋅
1
−
1
→
5
⋅
2
−
1
t
∣
2
→
3
∫
2
3
1
t
⋅
(
1
5
(
2
t
)
d
t
)
=
∫
2
3
2
5
⋅
d
t
=
(
2
5
⋅
t
)
∣
2
3
=
6
5
−
4
5
=
2
5
\begin{align*} &\int_1^2 \frac{1}{\sqrt{5x-1}} \cdot dx \\ \\ &t = \sqrt{5x-1} \\ \\ & t^2 = 5x-1 \\ \\ &\frac{t^2 + 1}{5} = x \\ \\ &d[\frac{1}{5} (t^2 + 1)] = dx \\ \\ &\frac{1}{5} (2t) dt = dx \\ \\ & x | 1 \rightarrow 2 \\ & t | \sqrt{5 \cdot 1 -1} \rightarrow \sqrt{5 \cdot 2 -1} \\ & t | 2 \rightarrow 3 \\ \\ &\int_2^3 \frac{1}{t} \cdot (\frac{1}{5} (2t) dt) \\ \\ &= \int_2^3 \frac{2}{5} \cdot dt \\ \\ &= (\frac{2}{5} \cdot t)|_2^3 \\ \\ &= \frac{6}{5} - \frac{4}{5} \\ \\ &= \frac{2}{5} \end{align*}
∫
1
2
5
x
−
1
1
⋅
d
x
t
=
5
x
−
1
t
2
=
5
x
−
1
5
t
2
+
1
=
x
d
[
5
1
(
t
2
+
1
)]
=
d
x
5
1
(
2
t
)
d
t
=
d
x
x
∣1
→
2
t
∣
5
⋅
1
−
1
→
5
⋅
2
−
1
t
∣2
→
3
∫
2
3
t
1
⋅
(
5
1
(
2
t
)
d
t
)
=
∫
2
3
5
2
⋅
d
t
=
(
5
2
⋅
t
)
∣
2
3
=
5
6
−
5
4
=
5
2
Previous
Second fundamental theorem of calculus
Next
Multivariable calculus
Last updated
5 years ago