Integration by parts
∫f(x)g′(x)dx∫abf(x)g′(x)dx=f(x)g(x)−∫f′(x)g(x)⋅dx⇓=f(x)g(x)∣ab−∫abf′(x)g(x)⋅dx Substitution method
∫125x−11⋅dxt=5x−1t2=5x−15t2+1=xd[51(t2+1)]=dx51(2t)dt=dxx∣1→2t∣5⋅1−1→5⋅2−1t∣2→3∫23t1⋅(51(2t)dt)=∫2352⋅dt=(52⋅t)∣23=56−54=52