💯
University Notes
More
Search
Ctrl + K
Differential
It's quite simple, if I give you an expression:
z
=
x
y
z = x y
z
=
x
y
You will get:
d
z
=
(
x
y
)
x
′
d
x
+
(
x
y
)
y
′
d
y
d
z
=
∂
z
∂
x
d
x
+
∂
z
∂
y
d
y
d
z
=
y
⋅
d
x
+
x
⋅
d
y
\begin{align*} dz &= (xy)^\prime_x dx + (xy)^\prime_y dy \\ \\ dz &= \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy \\ \\ dz &= y \cdot dx + x \cdot dy \end{align*}
d
z
d
z
d
z
=
(
x
y
)
x
′
d
x
+
(
x
y
)
y
′
d
y
=
∂
x
∂
z
d
x
+
∂
y
∂
z
d
y
=
y
⋅
d
x
+
x
⋅
d
y
Previous
Partial derivatives
Next
Multiple integral
Last updated
5 years ago