💯
University Notes
  • Introduction
  • High Level Math
    • Function, limitation, and continuity
      • What is function?
      • Two kinds of infinity
      • The limitation of a function
      • A model for getting limitation
    • Derivative and differential
      • Formulas of derivative
      • Use derivative formula
      • Goes deeper
      • Use derivative
        • Function analyzing in theory
          • First derivative
          • Second derivative
          • Domain and Extreme Value
          • Overall change
        • Derivative use in reality
    • Integration
      • Indefinite integral
        • Basic formulas
        • Use formula
        • Goes deeper
        • Integration by parts
      • Definite integral
        • Properties of definite integral
        • Second fundamental theorem of calculus
        • Multi-method for solving definite integral
    • Multivariable calculus
      • Limitation
      • Partial derivatives
      • Differential
      • Multiple integral
    • Series
    • Linear algebra
    • GaoKao
      • 1
      • The road for starting
      • Polar Coordinates
      • Tangent Line
  • Electrical Engineering
    • The Terminologys
    • DC
      • The circuit rule
      • KCL and KVL
      • Superposition
    • AC
      • Intuition
      • Resistor
      • Inductor
      • Capacitor
      • AC circuit
      • 三相电
        • 星形联结
        • 三角形联结
        • 实际电路
    • Voltage and Current Rule in Circuit
    • Response
      • Foundations
      • 零输入响应
      • 零状态响应
      • 一阶电路的全响应
  • Analog Electronics
    • Technical terms 1
    • DC stable source circuit 的分析与应用
      • 二极管的特性与应用
        • 半导体
        • PN junction
        • Diode
        • 测试二极管
      • 整流滤波电路的分析与应用
        • Rectifier circuit
      • 直流稳压电路的分析
        • Zener diode
        • Shunt voltage regulators
    • Thyristor
    • Technical terms 2
    • Amplifying circuit
      • Bipolar Junction Transistor
      • Common Emitter Configuration
      • Biasing
      • Analysis
      • Mess
      • Negative-feedback amplifier
      • Integrated Operational Amplifier
    • Algorithms
      • What's the ouput of a voltage rectifier circuit
      • PNP or NPN
      • Judging the state of a BJT
      • What's common in BJT
      • Does a amplifying circuit normal
      • What's the feedback type
      • What kind of distortion you are encounter
  • Digital Electronic Technology
    • Logic Gate
    • Logic expressions
    • Karnaugh map
    • Number system
    • Multiplexer
    • Flip-flop
  • Principles of Communications
    • Overviews
    • PCM
    • HDB3
    • Modulations
    • Cyclic code
  • Data Communications and Networking
    • Something about IPv4
  • Micro Control System 51 Series
    • The Delay function
    • The Interrupt function
  • Maintenance of Railway Optical Cable Lines
    • Questions
    • Pictures
  • Mobile Communications
    • Concepts
    • Coding and Modulation
    • Key Technologies
    • Mobile communication network structure
    • Radio wave Propagation and Interference
    • GSM
    • CDMA
    • GPRS
    • 3G
    • 4G
    • Base Station Maintenance
  • Multimedia Communication
    • Concept of Multimedia
    • Compression
    • Lossless Compression
    • Audio
    • Lossy Audio Coding
    • Graph Compression
    • All for the exam
  • Power system for Communication Devices
    • Overview
    • AC power Distribution Panel
    • UPS
    • HF Switched-mode Power Supply
    • Battery
    • Earthing or Use Lightning Arrester
    • Power Supply Monitoring System
    • All for the exam
  • Optical fiber Communication system
    • What is Optical fiber Communication system
      • Prepare
      • Something About Optical fiber
      • Passive Optical Devices
      • Active Optical Devices
      • Optical transmitter Test
      • Optical receiver Test
      • Compose an Optical Communication System
    • SDH (Synchronous Digital Hierarchy)
      • Frame Structure of SDH
      • SDH Equipments
      • Clock System
      • ZXONM E300 Practice
      • SDH protection
    • WDM (Wavelength-Division Multiplexing)
    • OTN (Optical Transport Network)
      • OverHead of OTN
      • OTN Alarms & Errors
      • Do it again, what's happened?
  • Communication Tech English
    • Fundamentals of Electricity
    • Digital Communications
    • Optical Communications
  • High-speed railway Communication Technology
    • Overview
    • Base Knowledge
    • FH98
    • MDS3400
    • Everything is for the exam
  • GSM for Railway
    • Overview
    • Wired Parts
    • Digital dispatch Communication System
    • Basic Knowledge of GSM-R
    • Key technologies for GSM-R
    • Structure of GSM-R
    • GSM-R Network Mode
    • Wireless Channels for GSM-R
    • Mobility Management
    • Connection Management
    • Security Management
    • GPRS
    • GSM-R/GPRS Wireless Access Platform
    • GSM-R Features
    • GSM-R Numbering Plan
    • ASCI
  • Network Configuration Training
    • Words I have learned
  • Broadband Access Technology
    • Using Copper Line
    • Using Optical Fiber
    • Wireless
    • All for the test
  • CIR
    • Basci Knowledge
    • Testing Equipment
    • The Structure of CIR
    • All for the exam
  • LTE
  • Script for ChaoXing
  • Transmission and access network
Powered by GitBook
On this page
  • key concept 1
  • key concept 2
  • Question and Answers
  • Area of a triangle is . The triangle is enclosed by a Cartesian coordinate system and a tangent. The equation of the tangent to the curve is at the point . What's the value of ?

Was this helpful?

  1. High Level Math
  2. GaoKao

Tangent Line

PreviousPolar CoordinatesNextElectrical Engineering

Last updated 5 years ago

Was this helpful?

Tangent: In geometry, the tangent line (or simply tangent) to a plane curve at a given point is the straight line that "just touches" the curve at that point.

key concept 1

The equation for the slope of the tangent line to f(x)f(x)f(x) is f′(x)f^\prime(x)f′(x).

f′(x)f^\prime(x)f′(x) is the derivative of f(x)f(x)f(x).

You can always get the slope of the tangent line by using f′(x)f^\prime(x)f′(x).

f(x) is nothing but a function or formula.

key concept 2

And a line equation could be represent as:

  • the slope-intercept formula: y=mx+by = mx + by=mx+b (Where mmm is the slope of the line, and bbb is the y-intercept)

The equation of any straight line, called a linear equation, can be written as: y = mx + b, where m is the slope of the line and b is the y-intercept.

  • the point-slope formula: y−y1=m(x−x1)y - y_1 = m(x - x_1)y−y1​=m(x−x1​) (This formula uses a point on the line, denoted by (x1,y1)(x_1, y_1)(x1​,y1​), and the slope of the line, denoted by mmm, to calculate the slope-intercept formula for the line)

Point-slope is the general form y-y₁=m(x-x₁) for linear equations. It emphasizes the slope of the line and a point on the line.

Question and Answers

Area of a triangle is 181818. The triangle is enclosed by a Cartesian coordinate system and a tangent. The equation of the tangent to the curve y=x−12y = x^{-\frac{1}{2}}y=x−21​ is at the point (a,a−12)(a, a^{-\frac{1}{2}})(a,a−21​). What's the value of aaa?

The answer is 64

we should try to understand the question sentence by sentence first.

1.Area of a triangle is :

2. The triangle is enclosed by a Cartesian coordinate system and a tangent.

  • tangent is a line

  • the triangle was created by the Cartesian coordinate system and the tangent line

3. The equation of the tangent to the curve is at the point .

The slope of the tangent line is:

Let’s say f(x)=x−12slope=f′(x)=−12x−12−1=−12x−32slope=f′(a)=−12a−32\begin{align*} \text{Let's say } f(x) &= x^{-\frac{1}{2}} \\ \\ slope = f^\prime(x) &= -\frac{1}{2}x^{-\frac{1}{2}-1} \\ &= -\frac{1}{2}x^{-\frac{3}{2}} \\ \\ slope = f^\prime(a) &= -\frac{1}{2}a^{-\frac{3}{2}} \end{align*}Let’s say f(x)slope=f′(x)slope=f′(a)​=x−21​=−21​x−21​−1=−21​x−23​=−21​a−23​​

Now we already have a point and a slope, then we can generate the equation of the line:

y−y1=m(x−x1)y−a−12=(−12a−32)(x−a)\begin{align*} y - y_1 &= m(x - x_1) \\ \\ y - a^{-\frac{1}{2}} &= (-\frac{1}{2}a^{-\frac{3}{2}} )(x - a) \end{align*}y−y1​y−a−21​​=m(x−x1​)=(−21​a−23​)(x−a)​

If we could get the x, y in the following picture, we can find an equation of the area of the triangle:

y−a−12=(−12a−32)(x−a)when x = 0: y−a−12=(−12a−32)(0−a)y−a−12=(−12a−32)(−a)y−a−12=12a−32+1y−a−12=12a−12y=12a−12+a−12y=32a−12when y = 0: 0−a−12=(−12a−32)(x−a)−a−12=(−12a−32)(x−a)−a−12=(−12a−32⋅x)−(−12a−32⋅a)−a−12=(−12a−32⋅x)+(12a−32⋅a)−a−12=(−12a−32⋅x)+(12a−32+1)−a−12=(−12a−32⋅x)+(12a−12)−a−12−(12a−12)=(−12a−32⋅x)(−1−12)a−12=(−12a−32⋅x)(−32)a−12=(−12a−32⋅x)−32a−12=−12a−32⋅x−32a−12−12a−32=x(−32⋅−21)a−12a−32=x(−32⋅−2)a−12a−32=x3⋅a−12a−32=x3⋅a(−12)−(−32)=x3⋅a(−12)+(32)=x3⋅a1=x3⋅a=x3a=xarea of triangle=12⋅height⋅width18=12⋅y⋅x18=12⋅32a−12⋅3a18=(12⋅32⋅3)⋅a−12⋅a18=(94)⋅a−12⋅a18=(94)⋅a−12+118=(94)⋅a1218⋅49=a128=a128=a82=(a)264=aa=64\begin{align*} y - a^{-\frac{1}{2}} &= (-\frac{1}{2}a^{-\frac{3}{2}})(x - a) \\ \\ \text{when x = 0: } & \\ y - a^{-\frac{1}{2}} &= (-\frac{1}{2}a^{-\frac{3}{2}})(0 - a) \\ y - a^{-\frac{1}{2}} &= (-\frac{1}{2}a^{-\frac{3}{2}})(- a) \\ y - a^{-\frac{1}{2}} &= \frac{1}{2}a^{-\frac{3}{2} + 1} \\ y - a^{-\frac{1}{2}} &= \frac{1}{2}a^{-\frac{1}{2}} \\ y &= \frac{1}{2}a^{-\frac{1}{2}} + a^{-\frac{1}{2}} \\ y &= \frac{3}{2}a^{-\frac{1}{2}} \\ \\ \text{when y = 0: } & \\ 0 - a^{-\frac{1}{2}} &= (-\frac{1}{2}a^{-\frac{3}{2}})(x - a) \\ - a^{-\frac{1}{2}} &= (-\frac{1}{2}a^{-\frac{3}{2}})(x - a) \\ - a^{-\frac{1}{2}} &= (-\frac{1}{2}a^{-\frac{3}{2}} \cdot x) - (-\frac{1}{2}a^{-\frac{3}{2}} \cdot a) \\ - a^{-\frac{1}{2}} &= (-\frac{1}{2}a^{-\frac{3}{2}} \cdot x) + (\frac{1}{2}a^{-\frac{3}{2}} \cdot a) \\ - a^{-\frac{1}{2}} &= (-\frac{1}{2}a^{-\frac{3}{2}} \cdot x) + (\frac{1}{2}a^{-\frac{3}{2} + 1}) \\ - a^{-\frac{1}{2}} &= (-\frac{1}{2}a^{-\frac{3}{2}} \cdot x) + (\frac{1}{2}a^{-\frac{1}{2}}) \\ - a^{-\frac{1}{2}} - (\frac{1}{2}a^{-\frac{1}{2}}) &= (-\frac{1}{2}a^{-\frac{3}{2}} \cdot x) \\ (-1 - \frac{1}{2})a^{-\frac{1}{2}} &= (-\frac{1}{2}a^{-\frac{3}{2}} \cdot x) \\ (- \frac{3}{2})a^{-\frac{1}{2}} &= (-\frac{1}{2}a^{-\frac{3}{2}} \cdot x) \\ - \frac{3}{2}a^{-\frac{1}{2}} &= -\frac{1}{2}a^{-\frac{3}{2}} \cdot x \\ \frac{- \frac{3}{2}a^{-\frac{1}{2}}}{-\frac{1}{2}a^{-\frac{3}{2}}} &= x \\ (-\frac{3}{2} \cdot -\frac{2}{1})\frac{a^{-\frac{1}{2}}}{a^{-\frac{3}{2}}} &= x \\ (-\frac{3}{2} \cdot -2)\frac{a^{-\frac{1}{2}}}{a^{-\frac{3}{2}}} &= x \\ 3 \cdot \frac{a^{-\frac{1}{2}}}{a^{-\frac{3}{2}}} &= x \\ 3 \cdot a^{(-\frac{1}{2}) - (-\frac{3}{2})} &= x \\ 3 \cdot a^{(-\frac{1}{2}) + (\frac{3}{2})} &= x \\ 3 \cdot a^1 &= x \\ 3 \cdot a &= x \\ 3a &= x \\ \\ \text{area of triangle} &= \frac{1}{2} \cdot height \cdot width \\ 18 &= \frac{1}{2} \cdot y \cdot x \\ 18 &= \frac{1}{2} \cdot \frac{3}{2}a^{-\frac{1}{2}} \cdot 3a \\ 18 &= (\frac{1}{2} \cdot \frac{3}{2} \cdot 3) \cdot a^{-\frac{1}{2}} \cdot a \\ 18 &= (\frac{9}{4}) \cdot a^{-\frac{1}{2}} \cdot a \\ 18 &= (\frac{9}{4}) \cdot a^{-\frac{1}{2} + 1} \\ 18 &= (\frac{9}{4}) \cdot a^{\frac{1}{2}} \\ 18 \cdot \frac{4}{9} &= a^{\frac{1}{2}} \\ 8 &= a^{\frac{1}{2}} \\ 8 &= \sqrt{a} \\ 8^2 &= (\sqrt{a})^2 \\ 64 &= a \\ a &= 64 \\ \end{align*}y−a−21​when x = 0: y−a−21​y−a−21​y−a−21​y−a−21​yywhen y = 0: 0−a−21​−a−21​−a−21​−a−21​−a−21​−a−21​−a−21​−(21​a−21​)(−1−21​)a−21​(−23​)a−21​−23​a−21​−21​a−23​−23​a−21​​(−23​⋅−12​)a−23​a−21​​(−23​⋅−2)a−23​a−21​​3⋅a−23​a−21​​3⋅a(−21​)−(−23​)3⋅a(−21​)+(23​)3⋅a13⋅a3aarea of triangle18181818181818⋅94​888264a​=(−21​a−23​)(x−a)=(−21​a−23​)(0−a)=(−21​a−23​)(−a)=21​a−23​+1=21​a−21​=21​a−21​+a−21​=23​a−21​=(−21​a−23​)(x−a)=(−21​a−23​)(x−a)=(−21​a−23​⋅x)−(−21​a−23​⋅a)=(−21​a−23​⋅x)+(21​a−23​⋅a)=(−21​a−23​⋅x)+(21​a−23​+1)=(−21​a−23​⋅x)+(21​a−21​)=(−21​a−23​⋅x)=(−21​a−23​⋅x)=(−21​a−23​⋅x)=−21​a−23​⋅x=x=x=x=x=x=x=x=x=x=21​⋅height⋅width=21​⋅y⋅x=21​⋅23​a−21​⋅3a=(21​⋅23​⋅3)⋅a−21​⋅a=(49​)⋅a−21​⋅a=(49​)⋅a−21​+1=(49​)⋅a21​=a21​=a21​=a​=(a​)2=a=64​

So, finally, we have got the value of a, which is 64.