星形联结

把三相电源的三个负极 XXYYZZ 接在一起,再从三个正极 AABBCC 引出导线来,这种联结方式叫做星型联结。(至于为什么取这个名字,大概是因为它长得像星星吧)

As we can see, if we assume that 三个负极所在的联结点为 NN,本质上 U˙AN=U˙A\dot U_{AN} = \dot U_{A}U˙BN=U˙B\dot U_{BN} = \dot U_{B}U˙CN=U˙C\dot U_{CN} = \dot U_{C},我们仍称 U˙AN\dot U_{AN}U˙BN\dot U_{BN}U˙CN\dot U_{CN} 为相电压

但有时,相电压提供的电压无法满足 our needs. We need a larger voltage source.

So we connect AB, BC, and CA, representing it as U˙AB\dot U_{AB}U˙BC\dot U_{BC}, and U˙CA\dot U_{CA}。我们称它们为线电压。

According to Kirchhoff's Voltage Law, 电压从一点到另一点降了多少被称为这两点间的电压,所以有:

U˙AB=U˙ANU˙BN=U˙AU˙BU˙BC=U˙BNU˙CN=U˙BU˙CU˙CA=U˙CNU˙AN=U˙CU˙A\begin{align*} \dot U_{AB} &= \dot U_{AN} - \dot U_{BN} = \dot U_A - \dot U_B \\ \\ \dot U_{BC} &= \dot U_{BN} - \dot U_{CN} = \dot U_B - \dot U_C \\ \\ \dot U_{CA} &= \dot U_{CN} - \dot U_{AN} = \dot U_C - \dot U_A \end{align*}

经过一系列的数学运算,我们发现线电压的模长(即有效值 UU)永远是相电压的 3\sqrt{3} 倍。31.7\sqrt{3} \approx 1.7,电压增大,满足了我们的需要。

另外,线电压在相位上永远比相电压超前 3030^\circ

U˙AB=3U(0+30)U˙BC=3U(120+30)U˙CA=3U(120+30)\begin{align*} \dot U_{AB} &= \sqrt{3} U \angle{(0^\circ + 30^\circ)} \\ \\ \dot U_{BC} &= \sqrt{3} U \angle{(-120^\circ+ 30^\circ)} \\ \\ \dot U_{CA} &= \sqrt{3} U \angle{(120^\circ+ 30^\circ)} \end{align*}

Last updated

Was this helpful?