💯
University Notes
  • Introduction
  • High Level Math
    • Function, limitation, and continuity
      • What is function?
      • Two kinds of infinity
      • The limitation of a function
      • A model for getting limitation
    • Derivative and differential
      • Formulas of derivative
      • Use derivative formula
      • Goes deeper
      • Use derivative
        • Function analyzing in theory
          • First derivative
          • Second derivative
          • Domain and Extreme Value
          • Overall change
        • Derivative use in reality
    • Integration
      • Indefinite integral
        • Basic formulas
        • Use formula
        • Goes deeper
        • Integration by parts
      • Definite integral
        • Properties of definite integral
        • Second fundamental theorem of calculus
        • Multi-method for solving definite integral
    • Multivariable calculus
      • Limitation
      • Partial derivatives
      • Differential
      • Multiple integral
    • Series
    • Linear algebra
    • GaoKao
      • 1
      • The road for starting
      • Polar Coordinates
      • Tangent Line
  • Electrical Engineering
    • The Terminologys
    • DC
      • The circuit rule
      • KCL and KVL
      • Superposition
    • AC
      • Intuition
      • Resistor
      • Inductor
      • Capacitor
      • AC circuit
      • 三相电
        • 星形联结
        • 三角形联结
        • 实际电路
    • Voltage and Current Rule in Circuit
    • Response
      • Foundations
      • 零输入响应
      • 零状态响应
      • 一阶电路的全响应
  • Analog Electronics
    • Technical terms 1
    • DC stable source circuit 的分析与应用
      • 二极管的特性与应用
        • 半导体
        • PN junction
        • Diode
        • 测试二极管
      • 整流滤波电路的分析与应用
        • Rectifier circuit
      • 直流稳压电路的分析
        • Zener diode
        • Shunt voltage regulators
    • Thyristor
    • Technical terms 2
    • Amplifying circuit
      • Bipolar Junction Transistor
      • Common Emitter Configuration
      • Biasing
      • Analysis
      • Mess
      • Negative-feedback amplifier
      • Integrated Operational Amplifier
    • Algorithms
      • What's the ouput of a voltage rectifier circuit
      • PNP or NPN
      • Judging the state of a BJT
      • What's common in BJT
      • Does a amplifying circuit normal
      • What's the feedback type
      • What kind of distortion you are encounter
  • Digital Electronic Technology
    • Logic Gate
    • Logic expressions
    • Karnaugh map
    • Number system
    • Multiplexer
    • Flip-flop
  • Principles of Communications
    • Overviews
    • PCM
    • HDB3
    • Modulations
    • Cyclic code
  • Data Communications and Networking
    • Something about IPv4
  • Micro Control System 51 Series
    • The Delay function
    • The Interrupt function
  • Maintenance of Railway Optical Cable Lines
    • Questions
    • Pictures
  • Mobile Communications
    • Concepts
    • Coding and Modulation
    • Key Technologies
    • Mobile communication network structure
    • Radio wave Propagation and Interference
    • GSM
    • CDMA
    • GPRS
    • 3G
    • 4G
    • Base Station Maintenance
  • Multimedia Communication
    • Concept of Multimedia
    • Compression
    • Lossless Compression
    • Audio
    • Lossy Audio Coding
    • Graph Compression
    • All for the exam
  • Power system for Communication Devices
    • Overview
    • AC power Distribution Panel
    • UPS
    • HF Switched-mode Power Supply
    • Battery
    • Earthing or Use Lightning Arrester
    • Power Supply Monitoring System
    • All for the exam
  • Optical fiber Communication system
    • What is Optical fiber Communication system
      • Prepare
      • Something About Optical fiber
      • Passive Optical Devices
      • Active Optical Devices
      • Optical transmitter Test
      • Optical receiver Test
      • Compose an Optical Communication System
    • SDH (Synchronous Digital Hierarchy)
      • Frame Structure of SDH
      • SDH Equipments
      • Clock System
      • ZXONM E300 Practice
      • SDH protection
    • WDM (Wavelength-Division Multiplexing)
    • OTN (Optical Transport Network)
      • OverHead of OTN
      • OTN Alarms & Errors
      • Do it again, what's happened?
  • Communication Tech English
    • Fundamentals of Electricity
    • Digital Communications
    • Optical Communications
  • High-speed railway Communication Technology
    • Overview
    • Base Knowledge
    • FH98
    • MDS3400
    • Everything is for the exam
  • GSM for Railway
    • Overview
    • Wired Parts
    • Digital dispatch Communication System
    • Basic Knowledge of GSM-R
    • Key technologies for GSM-R
    • Structure of GSM-R
    • GSM-R Network Mode
    • Wireless Channels for GSM-R
    • Mobility Management
    • Connection Management
    • Security Management
    • GPRS
    • GSM-R/GPRS Wireless Access Platform
    • GSM-R Features
    • GSM-R Numbering Plan
    • ASCI
  • Network Configuration Training
    • Words I have learned
  • Broadband Access Technology
    • Using Copper Line
    • Using Optical Fiber
    • Wireless
    • All for the test
  • CIR
    • Basci Knowledge
    • Testing Equipment
    • The Structure of CIR
    • All for the exam
  • LTE
  • Script for ChaoXing
  • Transmission and access network
Powered by GitBook
On this page
  • Method
  • Example

Was this helpful?

  1. High Level Math
  2. Function, limitation, and continuity

A model for getting limitation

Method

If anything goes well, it indeed has a general model for you guys getting limitation from a limit equation.

if an equation is a fraction:
    if fraction + or - a fraction:
        reduce fractions into one fraction by setting a common denominator
    if the equation has a radical sign:
        get rid of it by rationalizing.
    if put giving_x into equation getting "0/0":
        do factorization, get rid of one factor which makes equation looks like "0/0"
if the equation is not a fraction: # combined with simple +-x/
    put giving_x in equation directly

Example

lim⁡x→1x2+2x−3x−1=lim⁡x→1(x+3)(x−1)x−1=lim⁡x→1x+31=1+3=4\begin{align*} & \lim_{x \to 1}{\frac{x^2 + 2x - 3}{x - 1}} \\ \\ = & \lim_{x \to 1}{\frac{(x + 3)(x - 1)}{x - 1}} \\ \\ = & \lim_{x \to 1}{\frac{x + 3}{1}} \\ \\ = & 1 + 3 \\ \\ = & 4 \end{align*}====​x→1lim​x−1x2+2x−3​x→1lim​x−1(x+3)(x−1)​x→1lim​1x+3​1+34​
lim⁡x→+∞x2−1−x=lim⁡x→+∞x2−1−x1=lim⁡x→+∞(x2−1−x)(x2−1+x)1(x2−1+x)=lim⁡x→+∞x2−1−x2x2−1+x=lim⁡x→+∞−1x2−1+x=lim⁡x→+∞−1x2−1+xx=lim⁡x→+∞−1x2x2−1x2+xx=lim⁡x→+∞−11−1x2+1=−11−1+∞+1=−11−0+1=−12\begin{align*} & \lim_{x \to +\infty}{\sqrt{x^2 - 1} - x} \\ \\ = & \lim_{x \to +\infty}{\frac{\sqrt{x^2 - 1} - x}{1}} \\ \\ = & \lim_{x \to +\infty}{\frac{(\sqrt{x^2 - 1} - x) (\sqrt{x^2 - 1} + x)}{1(\sqrt{x^2 - 1} + x)}} \\ \\ = & \lim_{x \to +\infty}{\frac{x^2 - 1 - x^2}{\sqrt{x^2 - 1} + x}} \\ \\ = & \lim_{x \to +\infty}{\frac{-1}{\sqrt{x^2 - 1} + x}} \\ \\ = & \lim_{x \to +\infty}{\frac{-1}{\frac{\sqrt{x^2 - 1} + x}{x}}} \\ \\ = & \lim_{x \to +\infty}{\frac{-1}{\sqrt{\frac{x^2}{x^2} - \frac{1}{x^2}} + \frac{x}{x}}} \\ \\ = & \lim_{x \to +\infty}{\frac{-1}{\sqrt{1 - \frac{1}{x^2}} + 1}} \\ \\ = & \frac{-1}{\sqrt{1 - \frac{1}{+\infty}} + 1} \\ \\ = & \frac{-1}{\sqrt{1 - 0} + 1} \\ \\ = & -\frac{1}{2} \end{align*}==========​x→+∞lim​x2−1​−xx→+∞lim​1x2−1​−x​x→+∞lim​1(x2−1​+x)(x2−1​−x)(x2−1​+x)​x→+∞lim​x2−1​+xx2−1−x2​x→+∞lim​x2−1​+x−1​x→+∞lim​xx2−1​+x​−1​x→+∞lim​x2x2​−x21​​+xx​−1​x→+∞lim​1−x21​​+1−1​1−+∞1​​+1−1​1−0​+1−1​−21​​
PreviousThe limitation of a functionNextDerivative and differential

Last updated 4 years ago

Was this helpful?