💯
University Notes
  • Introduction
  • High Level Math
    • Function, limitation, and continuity
      • What is function?
      • Two kinds of infinity
      • The limitation of a function
      • A model for getting limitation
    • Derivative and differential
      • Formulas of derivative
      • Use derivative formula
      • Goes deeper
      • Use derivative
        • Function analyzing in theory
          • First derivative
          • Second derivative
          • Domain and Extreme Value
          • Overall change
        • Derivative use in reality
    • Integration
      • Indefinite integral
        • Basic formulas
        • Use formula
        • Goes deeper
        • Integration by parts
      • Definite integral
        • Properties of definite integral
        • Second fundamental theorem of calculus
        • Multi-method for solving definite integral
    • Multivariable calculus
      • Limitation
      • Partial derivatives
      • Differential
      • Multiple integral
    • Series
    • Linear algebra
    • GaoKao
      • 1
      • The road for starting
      • Polar Coordinates
      • Tangent Line
  • Electrical Engineering
    • The Terminologys
    • DC
      • The circuit rule
      • KCL and KVL
      • Superposition
    • AC
      • Intuition
      • Resistor
      • Inductor
      • Capacitor
      • AC circuit
      • 三相电
        • 星形联结
        • 三角形联结
        • 实际电路
    • Voltage and Current Rule in Circuit
    • Response
      • Foundations
      • 零输入响应
      • 零状态响应
      • 一阶电路的全响应
  • Analog Electronics
    • Technical terms 1
    • DC stable source circuit 的分析与应用
      • 二极管的特性与应用
        • 半导体
        • PN junction
        • Diode
        • 测试二极管
      • 整流滤波电路的分析与应用
        • Rectifier circuit
      • 直流稳压电路的分析
        • Zener diode
        • Shunt voltage regulators
    • Thyristor
    • Technical terms 2
    • Amplifying circuit
      • Bipolar Junction Transistor
      • Common Emitter Configuration
      • Biasing
      • Analysis
      • Mess
      • Negative-feedback amplifier
      • Integrated Operational Amplifier
    • Algorithms
      • What's the ouput of a voltage rectifier circuit
      • PNP or NPN
      • Judging the state of a BJT
      • What's common in BJT
      • Does a amplifying circuit normal
      • What's the feedback type
      • What kind of distortion you are encounter
  • Digital Electronic Technology
    • Logic Gate
    • Logic expressions
    • Karnaugh map
    • Number system
    • Multiplexer
    • Flip-flop
  • Principles of Communications
    • Overviews
    • PCM
    • HDB3
    • Modulations
    • Cyclic code
  • Data Communications and Networking
    • Something about IPv4
  • Micro Control System 51 Series
    • The Delay function
    • The Interrupt function
  • Maintenance of Railway Optical Cable Lines
    • Questions
    • Pictures
  • Mobile Communications
    • Concepts
    • Coding and Modulation
    • Key Technologies
    • Mobile communication network structure
    • Radio wave Propagation and Interference
    • GSM
    • CDMA
    • GPRS
    • 3G
    • 4G
    • Base Station Maintenance
  • Multimedia Communication
    • Concept of Multimedia
    • Compression
    • Lossless Compression
    • Audio
    • Lossy Audio Coding
    • Graph Compression
    • All for the exam
  • Power system for Communication Devices
    • Overview
    • AC power Distribution Panel
    • UPS
    • HF Switched-mode Power Supply
    • Battery
    • Earthing or Use Lightning Arrester
    • Power Supply Monitoring System
    • All for the exam
  • Optical fiber Communication system
    • What is Optical fiber Communication system
      • Prepare
      • Something About Optical fiber
      • Passive Optical Devices
      • Active Optical Devices
      • Optical transmitter Test
      • Optical receiver Test
      • Compose an Optical Communication System
    • SDH (Synchronous Digital Hierarchy)
      • Frame Structure of SDH
      • SDH Equipments
      • Clock System
      • ZXONM E300 Practice
      • SDH protection
    • WDM (Wavelength-Division Multiplexing)
    • OTN (Optical Transport Network)
      • OverHead of OTN
      • OTN Alarms & Errors
      • Do it again, what's happened?
  • Communication Tech English
    • Fundamentals of Electricity
    • Digital Communications
    • Optical Communications
  • High-speed railway Communication Technology
    • Overview
    • Base Knowledge
    • FH98
    • MDS3400
    • Everything is for the exam
  • GSM for Railway
    • Overview
    • Wired Parts
    • Digital dispatch Communication System
    • Basic Knowledge of GSM-R
    • Key technologies for GSM-R
    • Structure of GSM-R
    • GSM-R Network Mode
    • Wireless Channels for GSM-R
    • Mobility Management
    • Connection Management
    • Security Management
    • GPRS
    • GSM-R/GPRS Wireless Access Platform
    • GSM-R Features
    • GSM-R Numbering Plan
    • ASCI
  • Network Configuration Training
    • Words I have learned
  • Broadband Access Technology
    • Using Copper Line
    • Using Optical Fiber
    • Wireless
    • All for the test
  • CIR
    • Basci Knowledge
    • Testing Equipment
    • The Structure of CIR
    • All for the exam
  • LTE
  • Script for ChaoXing
  • Transmission and access network
Powered by GitBook
On this page

Was this helpful?

  1. Electrical Engineering
  2. Response

一阶电路的全响应

Previous零状态响应NextAnalog Electronics

Last updated 6 years ago

Was this helpful?

在这里修复一些理解上的错误,同时回到实际题目(即使我们都知道,题目并不是实际,但目前不是远古时代靠单纯实验就能做事,现在做事有太多抽象的预测)

全响应,并没有彻底断电或处于从零开始的充电过程,而是对电量大小进行调整,从一个级别到另一个级别

因为我们目前仍在用线性元件,所以电路信息也遵循线性代数的基本原则,可叠加:

全响应=零输入响应+零状态响应f(t)=f(0+)⋅e−tτ+f(∞)⋅(1−e−tτ)\begin{align*} &全响应=零输入响应+零状态响应 \\ \\ f(t) &= f(0_+) \cdot e^{- \frac{t}{\tau}} + f(\infty) \cdot (1 - e^{- \frac{t}{\tau}}) \end{align*}f(t)​全响应=零输入响应+零状态响应=f(0+​)⋅e−τt​+f(∞)⋅(1−e−τt​)​

本节之前,我也不懂 f(0+)f(0_+)f(0+​) 与 f(∞)f(\infty)f(∞) 有何不同

稳态∣t=0→f(t)←∣稳态t=∞\begin{align*} \\ 稳态 |_{t=0} \rightarrow f(t) \leftarrow | 稳态_{t=\infty} \\ \\ \end{align*}稳态∣t=0​→f(t)←∣稳态t=∞​​

f(0−)f(0_-)f(0−​) 或 f(0+)f(0_+)f(0+​) 只是指 f(t=0)f(t=0)f(t=0) 那一瞬间前后的值 ( f(0−)f(0_-)f(0−​) 指之前, f(0+)f(0_+)f(0+​) 指之后)

f(∞)f(\infty)f(∞) 则是指随着 f(t)f(t)f(t) 中的 ttt 不断增大, f(t)f(t)f(t) 整体的值已经达到一种稳定状态,基本不变

具体来讲, f(0+)f(0_+)f(0+​) 永远由 f(0−)f(0_-)f(0−​) 求出 (他俩相等)。而 f(0−)f(0_-)f(0−​) 永远在开关改变前的电路得到

f(∞)f(\infty)f(∞) 永远在开关改变后的电路得到

如图所示电路中,已知 Us=30VU_s=30VUs​=30V, R1=100ΩR_1=100\OmegaR1​=100Ω, C1=0.2μFC_1=0.2\mu FC1​=0.2μF, R2=200ΩR_2=200\OmegaR2​=200Ω, C2=0.1μFC_2=0.1\mu FC2​=0.1μF,换路前电路处于稳态。试求 t≥0t \geq 0t≥0 时的 uC1(t)、uC2(t)、i(t)u_{C1}(t)、u_{C2}(t)、i(t)uC1​(t)、uC2​(t)、i(t)

    \draw (0, 0) to [V=$U_s$](0, 4)
    to [short, i=$i$](3, 4)
    (3, 4) to [C, l=$C_1$, v=$u_{C1}$](3, 2) 
    to [R, l_=$R_1$](3, 0) to(0, 0)

    (3, 4) to (6, 4)
    to [R=$R_2$](6, 2)

    (6, 2) to [opening  switch, l=$S$](3, 2)
    (6, 2) to [C, l=$C_2$, v=$u_{C2}$](6, 0)
    to (3, 0);
1. When switch on, 电流从两个电阻穿过,两个电容分别与对应的两个电阻并联uC1(0+)=uC1(0−)=Us⋅R2R1+R2=30⋅200100+200=20VuC2(0+)=uC2(0−)=Us⋅R1R1+R2=30⋅100100+200=10V2. When switch off, 去掉开关,两个电阻分别与对应电容串联1. 直流电下,电容断电流2. 两个电阻上都没电流, 故没电压3. 两条并联支路上只剩电容的电压4. 并联电压相等,两个电容在这种情况下,其电压等于电压源uC1(∞)=uC2(∞)=uS=30V1. τ 中的 R 是指把其他电源“置零”后,从电容流出的电所经过的电阻值“总和”2. “置零方法”:电压源变导线,电流源变断路3. 别忘了,电容释放的电遇到另一个电容还是会断流τC1=R⋅C=100Ω⋅(0.2⋅10−6F)=20⋅10−6FτC2=R⋅C=200Ω⋅(0.1⋅10−6F)=20⋅10−6F3. 套公式,得到关于时间 t 的关系式uC1(t)=uC1(0+)⋅e−tτC1+uC1(∞)⋅(1−e−tτC1)=20⋅e−t20⋅10−6F+30⋅(1−e−t20⋅10−6F)=30−10⋅e−50000tuC2(t)=uC2(0+)⋅e−tτC2+uC2(∞)⋅(1−e−tτC2)=10⋅e−t20⋅10−6F+30⋅(1−e−t20⋅10−6F)=30−20⋅e−50000t4. 求电流i(t)1. 我们是求的一个过程,一个代表改变的式子2. 电容是慢慢阻断直流电的,在达到稳态时才完全阻断3. 所以我们在计算这个变化过程表达式时还要想象电阻上还有电流4. 别忘了 KCL 定理i(t)=Us−uC1(t)R1+Us−uC2(t)R2=30−(30−10⋅e−50000t)100+30−(30−20⋅e−50000t)200=10⋅e−50000t100+20⋅e−50000t200=0.2⋅e−50000tA\begin{align*} \\ \text{1. } & \text{When switch on, 电流从两个电阻穿过,两个电容分别与对应的两个电阻并联} \\ \\ & u_{C1}(0_+) = u_{C1}(0_-) = U_s \cdot \frac{R_2}{R_1 + R_2} = 30 \cdot \frac{200}{100 + 200} = 20 V \\ \\ & u_{C2}(0_+) = u_{C2}(0_-) = U_s \cdot \frac{R_1}{R_1 + R_2} = 30 \cdot \frac{100}{100 + 200} = 10 V \\ \\ \text{2. } & \text{When switch off, 去掉开关,两个电阻分别与对应电容串联} \\ \\ & \text{1. 直流电下,电容断电流} \\ & \text{2. 两个电阻上都没电流, 故没电压} \\ & \text{3. 两条并联支路上只剩电容的电压} \\ & \text{4. 并联电压相等,两个电容在这种情况下,其电压等于电压源} \\ \\ & u_{C1}(\infty) = u_{C2}(\infty) = u_S = 30V \\ \\ & \text{1. } \tau \text{ 中的 } R \text{ 是指把其他电源“置零”后,从电容流出的电所经过的电阻值“总和”} \\ & \text{2. “置零方法”:电压源变导线,电流源变断路} \\ & \text{3. 别忘了,电容释放的电遇到另一个电容还是会断流} \\ \\ & \tau_{C1} = R \cdot C = 100\Omega \cdot (0.2 \cdot 10^{-6} F) = 20 \cdot 10^{-6} F \\ \\ & \tau_{C2} = R \cdot C = 200\Omega \cdot (0.1 \cdot 10^{-6} F) = 20 \cdot 10^{-6} F \\ \\ \text{3. } & \text{套公式,得到关于时间 t 的关系式} \\ \\ & u_{C1}(t) = u_{C1}(0_+) \cdot e^{- \frac{t}{\tau_{C1}}} + u_{C1}(\infty) \cdot (1 - e^{- \frac{t}{\tau_{C1}}}) \\ \\ & = 20 \cdot e^{-\frac{t}{20 \cdot 10^{-6} F}} + 30 \cdot (1 - e^{-\frac{t}{20 \cdot 10^{-6} F}}) \\ \\ & = 30 - 10 \cdot e^{-50000t} \\ \\ & u_{C2}(t) = u_{C2}(0_+) \cdot e^{- \frac{t}{\tau_{C2}}} + u_{C2}(\infty) \cdot (1 - e^{- \frac{t}{\tau_{C2}}}) \\ \\ & = 10 \cdot e^{-\frac{t}{20 \cdot 10^{-6} F}} + 30 \cdot (1 - e^{-\frac{t}{20 \cdot 10^{-6} F}}) \\ \\ & = 30 - 20 \cdot e^{-50000t} \\ \\ \text{4. } & \text{求电流} i(t) \\ \\ & \text{1. 我们是求的一个过程,一个代表改变的式子} \\ & \text{2. 电容是慢慢阻断直流电的,在达到稳态时才完全阻断} \\ & \text{3. 所以我们在计算这个变化过程表达式时还要想象电阻上还有电流} \\ & \text{4. 别忘了 KCL 定理} \\ \\ & i(t) = \frac{U_s - u_{C1}(t)}{R_1} + \frac{U_s - u_{C2}(t)}{R_2} \\ \\ & = \frac{30 - (30 - 10 \cdot e^{-50000t})}{100} + \frac{30 - (30 - 20 \cdot e^{-50000t})}{200} \\ \\ & = \frac{10 \cdot e^{-50000t}}{100} + \frac{20 \cdot e^{-50000t}}{200} \\ \\ & = 0.2 \cdot e^{-50000t} A \end{align*}1. 2. 3. 4. ​When switch on, 电流从两个电阻穿过,两个电容分别与对应的两个电阻并联uC1​(0+​)=uC1​(0−​)=Us​⋅R1​+R2​R2​​=30⋅100+200200​=20VuC2​(0+​)=uC2​(0−​)=Us​⋅R1​+R2​R1​​=30⋅100+200100​=10VWhen switch off, 去掉开关,两个电阻分别与对应电容串联1. 直流电下,电容断电流2. 两个电阻上都没电流, 故没电压3. 两条并联支路上只剩电容的电压4. 并联电压相等,两个电容在这种情况下,其电压等于电压源uC1​(∞)=uC2​(∞)=uS​=30V1. τ 中的 R 是指把其他电源“置零”后,从电容流出的电所经过的电阻值“总和”2. “置零方法”:电压源变导线,电流源变断路3. 别忘了,电容释放的电遇到另一个电容还是会断流τC1​=R⋅C=100Ω⋅(0.2⋅10−6F)=20⋅10−6FτC2​=R⋅C=200Ω⋅(0.1⋅10−6F)=20⋅10−6F套公式,得到关于时间 t 的关系式uC1​(t)=uC1​(0+​)⋅e−τC1​t​+uC1​(∞)⋅(1−e−τC1​t​)=20⋅e−20⋅10−6Ft​+30⋅(1−e−20⋅10−6Ft​)=30−10⋅e−50000tuC2​(t)=uC2​(0+​)⋅e−τC2​t​+uC2​(∞)⋅(1−e−τC2​t​)=10⋅e−20⋅10−6Ft​+30⋅(1−e−20⋅10−6Ft​)=30−20⋅e−50000t求电流i(t)1. 我们是求的一个过程,一个代表改变的式子2. 电容是慢慢阻断直流电的,在达到稳态时才完全阻断3. 所以我们在计算这个变化过程表达式时还要想象电阻上还有电流4. 别忘了 KCL 定理i(t)=R1​Us​−uC1​(t)​+R2​Us​−uC2​(t)​=10030−(30−10⋅e−50000t)​+20030−(30−20⋅e−50000t)​=10010⋅e−50000t​+20020⋅e−50000t​=0.2⋅e−50000tA​