1

å·²ēŸ„å‡½ę•° f(x)=(xāˆ’2)ex+ax2+bxf(x) = (x - 2)e^x + ax^2 + bx ļ¼Œ x=1x = 1 ę˜Æ f(x)f(x) ēš„äø€äøŖęžå€¼ē‚¹

1. č‹„ x=1x = 1 ę˜Æ f(x)f(x) ēš„å”Æäø€ęžå€¼ē‚¹ļ¼Œę±‚å®žę•° aa ēš„å–å€¼čŒƒå›“

čƻ取äæ”ęÆļ¼š 1. ęžå€¼ē‚¹ļ¼š 当 x=1x = 1ļ¼Œ fā€²(x)=0f^\prime(x) = 0 2. å”Æäø€ęžå€¼ē‚¹ļ¼š äøēŸ„ęœ‰ä½•ę„ä¹‰ 3. aa ēš„å–å€¼čŒƒå›“ļ¼š ęˆ‘ä»¬č¦ę±‚ēš„ę˜Æäø€äøŖčŒƒå›“

尝čƕļ¼š

fā€²(x)=1ā‹…ex+(xāˆ’2)ex+2ax+b=ex+(xāˆ’2)ex+2ax+b=ex(1+xāˆ’2)+2ax+b=ex(xāˆ’1)+2ax+bfā€²(1)=0+2a+b=2a+b\begin{align*} f^\prime(x) &= 1 \cdot e^x + (x - 2)e^x + 2ax + b \\ \\ &= e^x + (x - 2)e^x + 2ax + b \\ \\ &= e^x(1 + x - 2) + 2ax + b \\ \\ &= e^x(x - 1) + 2ax + b \\ \\ f^\prime(1) &= 0 + 2a + b \\ \\ &= 2a + b \\ \\ \\ \end{align*}
fā€²(1)=02a+b=0Well,Ā asĀ longĀ asĀ weĀ wantĀ aĀ ,Ā weĀ shouldĀ keepĀ aĀ inĀ theĀ originĀ functionb=āˆ’2afā€²(x)=ex(xāˆ’1)+2axāˆ’2aIfĀ weĀ wantĀ toĀ calculateĀ theĀ rangeĀ ofĀ aĀ ,Ā weĀ mustĀ makeĀ sureĀ aĀ isĀ isolatedfā€²(x)=ex(xāˆ’1)+2a(xāˆ’1)SimplificationĀ isĀ alwaysĀ goodĀ forĀ theĀ nextĀ step,Ā maybeĀ afterĀ thatĀ youā€™llĀ findĀ aĀ wayĀ toĀ gofā€²(x)=(xāˆ’1)(ex+2a)Donā€™tĀ forget,Ā now,Ā theĀ xĀ isĀ equalĀ toĀ 1fā€²(x)=0ā‹…(ex+2a)\begin{align*} &f^\prime(1) = 0 \\ \\ &2a + b = 0 \\ \\ & \text{Well, as long as we want } a \text{ , we should keep } a \text{ in the origin function} \\ \\ &b = -2a \\ \\ &f^\prime(x) = e^x(x - 1) + 2ax - 2a \\ \\ & \text{If we want to calculate the range of } a \text{ , we must make sure } a \text{ is isolated} \\ \\ &f^\prime(x) = e^x(x - 1) + 2a(x - 1) \\ \\ &\text{Simplification is always good for the next step, maybe after that you'll find a way to go} \\ \\ &f^\prime(x) = (x - 1)(e^x + 2a) \\ \\ &\text{Don't forget, now, the } x \text{ is equal to } 1 \\ \\ &f^\prime(x) = 0 \cdot (e^x + 2a) \\ \\ \\ \end{align*}
ItĀ seemsĀ likeĀ (ex+2a)Ā couldĀ beĀ anyĀ value!(JustĀ anĀ imagination)āˆ’āˆžā‰¤(ex+2a)ā‰¤+āˆžButĀ weĀ allĀ knows,Ā asĀ xĀ goesĀ up,Ā exĀ onlyĀ goesĀ +āˆžĀ ,Ā notĀ āˆ’āˆžex=+āˆžĀ ,Ā ex=Ģøāˆ’āˆžAndĀ 2aĀ canĀ onlyĀ beĀ anyĀ valueĀ āˆˆ(āˆ’āˆž,+āˆž)Ā inĀ thisĀ case(ex)+(2a)=?(+āˆž)+(+āˆž)=(+āˆž)(+āˆž)+(āˆ’āˆž)=(0)\begin{align*} &\text{It seems like } (e^x + 2a) \text{ could be any value!(Just an imagination)} \\ \\ &-\infty \le (e^x + 2a) \le +\infty \\ \\ & \text{But we all knows, as x goes up, } e^x \text{ only goes } +\infty \text{ , not } -\infty \\ \\ & e^x = +\infty \text{ , } e^x \not= -\infty \\ \\ & \text{And } 2a \text{ can only be any value } \in (-\infty, +\infty) \text{ in this case} \\ \\ &(e^x) + (2a) = ? \\ & (+\infty) + (+\infty) = (+\infty) \\ & (+\infty) + (-\infty) = (0) \\ \\ \\ \end{align*}
SoĀ (ex+2a)āˆˆ[0,+āˆž)(ex+2a)ā‰„02aā‰„āˆ’ex2aā‰„āˆ’(+āˆž)2aā‰„āˆ’āˆžBecauseĀ āˆ’āˆž,Ā 0,Ā +āˆžĀ splitĀ allĀ numberĀ intoĀ 3Ā partsĀ ,Ā ThereforeĀ 2aā‰„0ā‰„āˆ’āˆžaā‰„0\begin{align*} \text{So } (e^x + 2a) &\in [0, +\infty) \\ \\ (e^x + 2a) &\ge 0 \\ \\ 2a &\ge -e^x \\ \\ 2a &\ge -(+ \infty) \\ \\ 2a &\ge -\infty \\ \\ \text{Because } -\infty &\text{, 0, } +\infty \text{ split all number into 3 parts} \text{ , Therefore } \\ \\ 2a \ge 0 \ge -\infty& \\ \\ a \ge 0& \end{align*}

2. č®Øč®ŗ f(x)f(x) ēš„å•č°ƒę€§

ę½œę„čƆ:

č®Øč®ŗå‡½ę•°ēš„å•č°ƒę€§ļ¼Œå®žé™…äøŠå°±ę˜Æč®Øč®ŗäø€é˜¶åÆ¼ę•°ēš„ę­£č“Ÿę€§

3. č‹„å­˜åœØę­£ę•° x0x_0 ļ¼Œä½æ得 f(x0)<af(x_0) < a ļ¼Œ ę±‚å®žę•° aa ēš„å–å€¼čŒƒå›“

Last updated