In fact, I don't wanna write this. But I'm in china school, they don't care what you have learned, they only care about what you can do on a test paper.
How to read
s i n e ‾ = sin \underline{sine} = \sin s in e = sin
c o ‾ s i n e ‾ = cos \underline{co} \underline{sine} = \cos co s in e = cos
t a n ‾ g e n t ‾ = tan \underline{tan} \underline{gent} = \tan t an g e n t = tan
c o ‾ t a n g e n t ‾ = cot \underline{co} \underline{tangent} = \cot co t an g e n t = cot
s e ‾ c a n t ‾ = sec \underline{se} \underline{cant} = \sec se c an t = sec
c o s e ‾ c a n t ‾ = csc \underline{cose} \underline{cant} = \csc cose c an t = csc
Basic Derivative Formula
( C ) ′ = 0 (C is a constant) ( x n ) ′ = n x n − 1 ( a x ) ′ = a x ln a ( e x ) ′ = e x ( log a x ) ′ = 1 x ln a ( ln x ) ′ = 1 x ( sin x ) ′ = cos x ( cos x ) ′ = − sin x ( tan x ) ′ = sec 2 x ( cot x ) ′ = − csc 2 x ( sec x ) ′ = sec x tan x ( csc x ) ′ = − csc x cot x ( arcsin x ) ′ = 1 1 − x 2 ( arccos x ) ′ = − 1 1 − x 2 ( arctan x ) ′ = 1 1 + x 2 ( a r c c o t x ) ′ = − 1 1 + x 2 \begin{align*}
\\
(C)^\prime &= 0 &\text{(C is a constant)} \\ \\
(x^n)^\prime &= nx^{n-1} \\ \\
(a^x)^\prime &= a^x\ln{a} &(e^x)^\prime &= e^x \\ \\
(\log_a{x})^\prime &= \frac{1}{x\ln{a}} &(\ln{x})^\prime &= \frac{1}{x} \\ \\ \\
(\sin{x})^\prime &= \cos{x} &(\cos{x})^\prime &= -\sin{x} \\ \\
(\tan{x})^\prime &= \sec^2{x} &(\cot{x})^\prime &= -\csc^2{x} \\ \\
(\sec{x})^\prime &= \sec{x}\tan{x} &(\csc{x})^\prime &= -\csc{x}\cot{x} \\ \\ \\
(\arcsin{x})^\prime &= \frac{1}{\sqrt{1 - x^2}} &(\arccos{x})^\prime &= -\frac{1}{\sqrt{1 - x^2}} \\ \\
(\arctan{x})^\prime &= \frac{1}{1 + x^2} &(arccot{x})^\prime &= -\frac{1}{1 + x^2} \\ \\
\end{align*} ( C ) ′ ( x n ) ′ ( a x ) ′ ( log a x ) ′ ( sin x ) ′ ( tan x ) ′ ( sec x ) ′ ( arcsin x ) ′ ( arctan x ) ′ = 0 = n x n − 1 = a x ln a = x ln a 1 = cos x = sec 2 x = sec x tan x = 1 − x 2 1 = 1 + x 2 1 (C is a constant) ( e x ) ′ ( ln x ) ′ ( cos x ) ′ ( cot x ) ′ ( csc x ) ′ ( arccos x ) ′ ( a rcco t x ) ′ = e x = x 1 = − sin x = − csc 2 x = − csc x cot x = − 1 − x 2 1 = − 1 + x 2 1 Additional
csc x = 1 sin x sec x = 1 cos x cot x = 1 tan x sin 2 x + cos 2 x = 1 1 + tan 2 x = sec 2 x 1 + cot 2 x = csc 2 x tan x = sin x cos x cot x = cos x sin x \begin{align*}
&\csc x = \frac{1}{\sin x}
\\ \\
&\sec x = \frac{1}{\cos x}
\\ \\
&\cot x = \frac{1}{\tan x}
\\ \\ \\
&\sin ^2{x} + \cos ^2{x} = 1
\\ \\
&1 + \tan ^2{x} = \sec ^2{x}
\\ \\
&1 + \cot ^2{x} = \csc ^2{x}
\\ \\ \\
&\tan{x} = \frac{\sin{x}}{\cos{x}}
\\ \\
&\cot{x} = \frac{\cos{x}}{\sin{x}}
\end{align*} csc x = sin x 1 sec x = cos x 1 cot x = tan x 1 sin 2 x + cos 2 x = 1 1 + tan 2 x = sec 2 x 1 + cot 2 x = csc 2 x tan x = cos x sin x cot x = sin x cos x