In fact, I don't wanna write this. But I'm in china school, they don't care what you have learned, they only care about what you can do on a test paper.
How to read
s i n e ā¾ = sin ā” \underline{sine} = \sin s in e ā = sin
c o ā¾ s i n e ā¾ = cos ā” \underline{co} \underline{sine} = \cos co ā s in e ā = cos
t a n ā¾ g e n t ā¾ = tan ā” \underline{tan} \underline{gent} = \tan t an ā g e n t ā = tan
c o ā¾ t a n g e n t ā¾ = cot ā” \underline{co} \underline{tangent} = \cot co ā t an g e n t ā = cot
s e ā¾ c a n t ā¾ = sec ā” \underline{se} \underline{cant} = \sec se ā c an t ā = sec
c o s e ā¾ c a n t ā¾ = csc ā” \underline{cose} \underline{cant} = \csc cose ā c an t ā = csc
( C ) ā² = 0 (CĀ isĀ aĀ constant) ( x n ) ā² = n x n ā 1 ( a x ) ā² = a x ln ā” a ( e x ) ā² = e x ( log ā” a x ) ā² = 1 x ln ā” a ( ln ā” x ) ā² = 1 x ( sin ā” x ) ā² = cos ā” x ( cos ā” x ) ā² = ā sin ā” x ( tan ā” x ) ā² = sec ā” 2 x ( cot ā” x ) ā² = ā csc ā” 2 x ( sec ā” x ) ā² = sec ā” x tan ā” x ( csc ā” x ) ā² = ā csc ā” x cot ā” x ( arcsin ā” x ) ā² = 1 1 ā x 2 ( arccos ā” x ) ā² = ā 1 1 ā x 2 ( arctan ā” x ) ā² = 1 1 + x 2 ( a r c c o t x ) ā² = ā 1 1 + x 2 \begin{align*}
\\
(C)^\prime &= 0 &\text{(C is a constant)} \\ \\
(x^n)^\prime &= nx^{n-1} \\ \\
(a^x)^\prime &= a^x\ln{a} &(e^x)^\prime &= e^x \\ \\
(\log_a{x})^\prime &= \frac{1}{x\ln{a}} &(\ln{x})^\prime &= \frac{1}{x} \\ \\ \\
(\sin{x})^\prime &= \cos{x} &(\cos{x})^\prime &= -\sin{x} \\ \\
(\tan{x})^\prime &= \sec^2{x} &(\cot{x})^\prime &= -\csc^2{x} \\ \\
(\sec{x})^\prime &= \sec{x}\tan{x} &(\csc{x})^\prime &= -\csc{x}\cot{x} \\ \\ \\
(\arcsin{x})^\prime &= \frac{1}{\sqrt{1 - x^2}} &(\arccos{x})^\prime &= -\frac{1}{\sqrt{1 - x^2}} \\ \\
(\arctan{x})^\prime &= \frac{1}{1 + x^2} &(arccot{x})^\prime &= -\frac{1}{1 + x^2} \\ \\
\end{align*} ( C ) ā² ( x n ) ā² ( a x ) ā² ( log a ā x ) ā² ( sin x ) ā² ( tan x ) ā² ( sec x ) ā² ( arcsin x ) ā² ( arctan x ) ā² ā = 0 = n x n ā 1 = a x ln a = x ln a 1 ā = cos x = sec 2 x = sec x tan x = 1 ā x 2 ā 1 ā = 1 + x 2 1 ā ā (CĀ isĀ aĀ constant) ( e x ) ā² ( ln x ) ā² ( cos x ) ā² ( cot x ) ā² ( csc x ) ā² ( arccos x ) ā² ( a rcco t x ) ā² ā = e x = x 1 ā = ā sin x = ā csc 2 x = ā csc x cot x = ā 1 ā x 2 ā 1 ā = ā 1 + x 2 1 ā ā Additional
csc ā” x = 1 sin ā” x sec ā” x = 1 cos ā” x cot ā” x = 1 tan ā” x sin ā” 2 x + cos ā” 2 x = 1 1 + tan ā” 2 x = sec ā” 2 x 1 + cot ā” 2 x = csc ā” 2 x tan ā” x = sin ā” x cos ā” x cot ā” x = cos ā” x sin ā” x \begin{align*}
&\csc x = \frac{1}{\sin x}
\\ \\
&\sec x = \frac{1}{\cos x}
\\ \\
&\cot x = \frac{1}{\tan x}
\\ \\ \\
&\sin ^2{x} + \cos ^2{x} = 1
\\ \\
&1 + \tan ^2{x} = \sec ^2{x}
\\ \\
&1 + \cot ^2{x} = \csc ^2{x}
\\ \\ \\
&\tan{x} = \frac{\sin{x}}{\cos{x}}
\\ \\
&\cot{x} = \frac{\cos{x}}{\sin{x}}
\end{align*} ā csc x = sin x 1 ā sec x = cos x 1 ā cot x = tan x 1 ā sin 2 x + cos 2 x = 1 1 + tan 2 x = sec 2 x 1 + cot 2 x = csc 2 x tan x = cos x sin x ā cot x = sin x cos x ā ā